Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Daradkeh, Samer I.

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Electrical Characterization of Epoxy Nanocomposite under High DC Voltage17citations

Places of action

Chart of shared publication
Abuamr, Adel M.
1 / 2 shared
Alsoud, Ammar
1 / 4 shared
Jaber, Ahmad
1 / 3 shared
Mousa, Marwan S.
1 / 3 shared
Holcman, Vladimír
1 / 11 shared
Shaheen, Adel
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Abuamr, Adel M.
  • Alsoud, Ammar
  • Jaber, Ahmad
  • Mousa, Marwan S.
  • Holcman, Vladimír
  • Shaheen, Adel
OrganizationsLocationPeople

article

Electrical Characterization of Epoxy Nanocomposite under High DC Voltage

  • Abuamr, Adel M.
  • Daradkeh, Samer I.
  • Alsoud, Ammar
  • Jaber, Ahmad
  • Mousa, Marwan S.
  • Holcman, Vladimír
  • Shaheen, Adel
Abstract

<jats:p>This work studies the direct current breakdown characteristics of unfilled epoxy and epoxy nonconductive nanocomposites (SiO2,MgO and Al2O3). It also examines the variation of electrical properties in epoxy nanocomposites. The novel aspect of this study is that the samples of Epoxy nanocomposite were exposed to high voltages of up to six kilo volts for three hours using field electron microscopy under high vacuum conditions (10−5 mbar). The current emitted from these samples was measured at three different intervals of time. In addition, the influence of high voltage on the permittivity, loss factor (tan(δ)), and conductivity of the epoxy nanocomposite was studied. This evaluation was conducted before and after applying the voltage at room temperature, The frequency range extends from 10−2–10−7 Hz using the Novo Control Alpha-A analyzer. Current–voltage characterization was performed through field electron microscopy. The samples were characterized by scanning electron microscopy–energy dispersive X-ray spectroscopy and Fourier Transform Infrared Spectroscopy. The unfilled epoxy exhibited structural degradation, resulting in the formation of holes when exposed to high voltages of up to six kilo volts, leading to a reduction in electrical properties. Nevertheless, the addition of nanoparticles shows a significant increase in the operational lifetime of the epoxy nanocomposite. The degree of increase in the lifetime of epoxy composite varied depending on several factors such as the type of NPs introduced and their respective sizes. The epoxy/Al2O3 nanocomposite comparing with epoxy/MgO and epoxy/SiO2 nanocomposite showed elevated resistance to direct current breakdown strength and maintaining its dielectric.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • scanning electron microscopy
  • strength
  • Fourier transform infrared spectroscopy
  • X-ray spectroscopy