People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Capurso, Giovanni
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Study of the Failure Mechanism of a High-Density Polyethylene Liner in a Type IV High-Pressure Storage Tankcitations
- 2022De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH2)n-2nLiH Systems (A = Li, K, Na, and Rb)citations
- 2022De-hydrogenation/rehydrogenation properties and reaction mechanism of AmZn(NH2)n-2nLiH systems (A = Li, K, Na, and Rb)citations
- 2022De-hydrogenation/Rehydrogenation Properties and Reaction Mechanism of AmZn(NH$_2$)$_{n-2}$nLiH Systems (A = Li, K, Na, and Rb)citations
- 2022Study of the Corrosion Behaviour of Welded Systems for Marine Industry Applicationscitations
- 2021Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mncitations
- 2021Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mncitations
- 2020Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mncitations
- 2019Application of hydrides in hydrogen storage and compression:Achievements, outlook and perspectivescitations
- 2019In-situ neutron diffraction during reversible deuterium loading in under-stoichiometric and Mn,Cu-substituted Ti(Fe,Mn,Cu)0.9 alloys
- 2019Application of Hydrides in Hydrogen Storage and Compression: Achievements, Outlook and Perspectivescitations
- 2019Application of hydrides in hydrogen storage and compression: achievements, outlook and perspectivescitations
- 2018Insights into the Rb-Mg-N-H System: An Ordered Mixed Amide/Imide Phase and a Disordered Amide/Hydride Solid Solutioncitations
Places of action
Organizations | Location | People |
---|
article
Study of the Failure Mechanism of a High-Density Polyethylene Liner in a Type IV High-Pressure Storage Tank
Abstract
<jats:p>The use of Type IV cylinders for gas storage is becoming more widespread in various sectors, especially in transportation, owing to the lightweight nature of this type of cylinder, which is composed of a polymeric liner that exerts a barrier effect and an outer composite material shell that primarily imparts mechanical strength. In this work, the failure analysis of an HDPE liner in a Type IV cylinder for high-pressure storage was carried out. The breakdown occurred during a cyclic pressure test at room temperature and manifested in the hemispherical head area, as cracks perpendicular to the liner pinch-off line. The failed sample was thoroughly investigated and its characteristics were compared with those of other liners at different stages of production of a Type IV cylinder (blow molding, curing of the composite material). An examination of the liner showed that no significant chemical and morphological changes occurred during the production cycle of a Type IV cylinder that could justify the liner rupture, and that the most likely cause of failure was a design-related fatigue phenomenon.</jats:p>