People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Infante, Virgínia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Thermo-Mechanical Characterization of Metal–Polymer Friction Stir Composite Joints—A Full Factorial Design of Experimentscitations
- 2024Influence of Milling and Abrasive Waterjet Cutting on the Fatigue Behaviour of DP600 Steel Sheetcitations
- 2021Friction stir processing and welding technologies
- 2019Metallographic and morphological characterization of sub-surface friction stirred channels produced on AA5083-H111citations
- 2017Effect of Microstructure on the Fatigue Behavior of a Friction Stirred Channel Aluminium Alloycitations
- 2015Characterisation of fatigue fracture surfaces of friction stir channelling specimens tested at different temperaturescitations
- 2014Role of friction stir channel geometry on the fatigue behaviour of AA5083-H111 at 120°C and 200°Ccitations
- 2014Fatigue behaviour at elevated temperature of friction stir channelling solid plates of AA5083-H111 aluminium alloycitations
- 2014Modelling microstructural effects on the mechanical behaviour of a friction stirred channel aluminium alloycitations
- 2014Fatigue assessment of friction stir channelscitations
- 2013Metallographic characterization of friction stir channelscitations
- 2012Mechanical characterization of friction stir channels under internal pressure and in-plane bendingcitations
Places of action
Organizations | Location | People |
---|
article
Thermo-Mechanical Characterization of Metal–Polymer Friction Stir Composite Joints—A Full Factorial Design of Experiments
Abstract
<jats:p>With the increasing demand for lighter, more environmentally friendly, and affordable solutions in the mobility sector, designers and engineers are actively promoting the use of innovative integral dissimilar structures. In this field, friction stir-based technologies offer unique advantages compared with conventional joining technologies, such as mechanical fastening and adhesive bonding, which recently demonstrated promising results. In this study, an aluminum alloy and a glass fiber-reinforced polymer were friction stir joined in an overlap configuration. To assess the main effects, interactions, and influence of processing parameters on the mechanical strength and processing temperature of the fabricated joints, a full factorial design study with three factors and two levels was carried out. The design of experiments resulted in statistical models with excellent fit to the experimental data, enabling a thorough understanding of the influence of rotational speed, travel speed, and tool tilt angle on dissimilar metal-to-polymer friction stir composite joints. The mechanical strength of the composite joints ranged from 1708.1 ± 45.5 N to 3414.2 ± 317.1, while the processing temperature was between 203.6 ± 10.7 °C and 251.5 ± 9.7.</jats:p>