People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Archer, Edward
University of Ulster
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Lap Shear Strength and Fatigue Analysis of Continuous Carbon-Fibre-Reinforced 3D-Printed Thermoplastic Composites by Varying the Load and Fibre Contentcitations
- 2022Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strengthcitations
- 2022Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractionscitations
- 2021Experimental Investigations of 3D Woven Layer to-Layer Carbon/Epoxy Composites at Different Strain Ratescitations
- 2021Influence of Binder Float Length on the Out-of-Plane and Axial Impact Performance of 3D Woven Compositescitations
- 2020Improved crush energy absorption in 3D woven composites by pick density modificationcitations
- 2019Influence of Textile Architecture on the Mechanical Properties of 3D Woven Carbon Composites
- 2019Comparative studies of structure property relationship between glass/epoxy and carbon/epoxy 3D woven composites
- 2019Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites
- 2019Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulationcitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine bladescitations
- 2017Development of an Embedded Thin-film Strain-sensor-based SHM for Composite Tidal Turbine Blades
- 2010Analytical Elastic Stiffness Model for 3D Woven Orthogonal Interlock Compositescitations
Places of action
Organizations | Location | People |
---|
article
Lap Shear Strength and Fatigue Analysis of Continuous Carbon-Fibre-Reinforced 3D-Printed Thermoplastic Composites by Varying the Load and Fibre Content
Abstract
This study focuses on evaluating the fatigue life performance of 3D-printed polymer composites produced through the fused deposition modelling (FDM) technique. Fatigue life assessment is essential in designing components for industries like aerospace, medical, and automotive, as it provides an estimate of the component’s safe service life during operation. While there is a lack of detailed research on the fatigue behaviour of 3D-printed polymer composites, this paper aims to fill that gap. Fatigue tests were conducted on the 3D-printed polymer composites under various loading conditions, and static (tensile) tests were performed to determine their ultimate tensile strength. The fatigue testing load ranged from 80% to 98% of the total static load. The results showed that the fatigue life of the pressed samples using a platen press was significantly better than that of the non-pressed samples. Samples subjected to fatigue testing at 80% of the ultimate tensile strength (UTS) did not experience failure even after 1 million cycles, while samples tested at 90% of UTS failed after 50,000 cycles, with the failure being characterized as splitting and clamp area failure. This study also included a lap shear analysis of the 3D-printed samples, comparing those that were bonded using a two-part Araldite glue to those that were fabricated as a single piece using the Markforged Mark Two 3D printer. In summary, this study sheds light on the fatigue life performance of 3D-printed polymer composites fabricated using the FDM technique. The results suggest that the use of post-printing platen press improved the fatigue life of 3D-printed samples, and that single printed samples have better strength of about 265 MPa than adhesively bonded samples in which the strength was 56 MPa.