People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brząkalski, Dariusz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubescitations
- 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth compositescitations
- 2023Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teethcitations
- 2023Organosilicon Compounds in Hot-Melt Adhesive Technologiescitations
- 2023Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Propertiescitations
- 2022Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Reviewcitations
- 2022Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO<inf>2</inf> Dispersants and Stabilizers for Pigmented Epoxy Resinscitations
- 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Compositescitations
- 2022Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistrycitations
- 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resinscitations
- 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Compositescitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
- 2020Highly bulky spherosilicates as functional additives for polyethylene processing--Influence on mechanical and thermal propertiescitations
- 2019The influence of surface physicochemistry of solid fillers on dispersion in polyurea systems
Places of action
Organizations | Location | People |
---|
article
Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubes
Abstract
<jats:p>The main goal of this work was an improvement in the mechanical and electrical properties of acrylic resin-based nanocomposites filled with chemically modified carbon nanotubes. For this purpose, the surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out by means of aryl groups grafting via the diazotization reaction with selected aniline derivatives, and then nanocomposites based on ELIUM® resin were fabricated. FT-IR analysis confirmed the effectiveness of the carried-out chemical surface modification of MWCNTs as new bands on FT-IR spectra appeared in the measurements. TEM observations showed that carbon nanotube fragmentation did not occur during the modifications. According to the results from Raman spectroscopy, the least defective carbon nanotube structure was obtained for aniline modification. Transmission light microscopy analysis showed that the neat MWCNTs agglomerate strongly, while the proposed modifications improved their dispersion significantly. Viscosity tests confirmed, that as the nanofiller concentration increases, the viscosity of the mixture increases. The mixture with the highest dispersion of nanoparticles exhibited the most viscous behaviour. Finally, an enhancement in impact resistance and electrical conductivity was obtained for nanocomposites containing modified MWCNTs.</jats:p>