Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moyano, María Alejandra

  • Google
  • 1
  • 7
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Polyurethane Adhesives with Chemically Debondable Properties via Diels–Alder Bonds11citations

Places of action

Chart of shared publication
Hernández Fernández, Carlota
1 / 1 shared
Aran-Ais, Francisca
1 / 2 shared
Pastor, Isidro M.
1 / 1 shared
Orgilés-Calpena, Elena
1 / 3 shared
Alonso, Diego A.
1 / 6 shared
Sierra-Molero, Francisco J.
1 / 1 shared
Blasco, Pilar Carbonell
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hernández Fernández, Carlota
  • Aran-Ais, Francisca
  • Pastor, Isidro M.
  • Orgilés-Calpena, Elena
  • Alonso, Diego A.
  • Sierra-Molero, Francisco J.
  • Blasco, Pilar Carbonell
OrganizationsLocationPeople

article

Polyurethane Adhesives with Chemically Debondable Properties via Diels–Alder Bonds

  • Hernández Fernández, Carlota
  • Aran-Ais, Francisca
  • Pastor, Isidro M.
  • Orgilés-Calpena, Elena
  • Alonso, Diego A.
  • Sierra-Molero, Francisco J.
  • Blasco, Pilar Carbonell
  • Moyano, María Alejandra
Abstract

<jats:p>Covalent adaptable networks (CANs) represent a pioneering advance in polymer science, offering unprecedented versatility in materials design. Unlike conventional adhesives with irreversible bonds, CAN-based polyurethane adhesives have the unique ability to undergo chemical restructuring through reversible bonds. One of the strategies for incorporating these types of reactions in polyurethanes is by functionalisation with Diels–Alder (DA) adducts. By taking advantage of the reversible nature of the DA chemistry, the adhesive undergoes controlled crosslinking and decrosslinking processes, allowing for precise modulation of bond strength. This adaptability is critical in applications requiring reworkability or recyclability, as it allows for easy disassembly and reassembly of bonded components without compromising the integrity of the material. This study focuses on the sustainable synthesis and characterisation of a solvent-based polyurethane adhesive, obtained by functionalising a polyurethane prepolymer with DA diene and dienophiles. The characterisation of the adhesives was carried out using different experimental techniques: nuclear magnetic resonance spectroscopy (NMR), Brookfield viscosity, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and T-peel strength testing of leather/adhesive/rubber joints to determine the adhesive properties, both before and after the application of external stimuli. The conversion of both the DA and retro-Diels–Alder (r-DA) reactions was confirmed by 1H-NMR. The adhesive properties were not altered by the functionalisation of the adhesive prepolymer, showing similar thermal resistance and good rheological and adhesive properties, even exceeding the most demanding technical requirements for upper-to-sole joints in footwear. After the application of an external thermal stimuli, the bonded materials separated without difficulty and without damage, thus facilitating their separation, recovery and recycling.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • viscosity
  • thermogravimetry
  • differential scanning calorimetry
  • Nuclear Magnetic Resonance spectroscopy
  • rubber