Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bol, Rowin

  • Google
  • 2
  • 2
  • 20

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Printing path-dependent two-scale models for 3D printed planar auxetics by material extrusion4citations
  • 2023Micromechanical Models for FDM 3D-Printed Polymers16citations

Places of action

Chart of shared publication
Šavija, Branko
2 / 88 shared
Xu, Yading
1 / 12 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Šavija, Branko
  • Xu, Yading
OrganizationsLocationPeople

document

Micromechanical Models for FDM 3D-Printed Polymers

  • Šavija, Branko
  • Bol, Rowin
Abstract

Due to its large number of advantages compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has gained increasing attention and popularity. Among the most common AM techniques is fused filament fabrication (FFF), usually referred to by its trademarked name: fused deposition modeling (FDM). This is the most efficient technique for manufacturing physical three-dimensional thermoplastics, such that FDM machines are nowadays the most common. Regardless of the 3D-printing methodology, AM techniques involve layer-by-layer deposition. Generally, this layer-wise process introduces anisotropy into the produced parts. The manufacturing procedure creates parts possessing heterogeneities at the micro (usually up to 1 mm) and meso (mm to cm) length scales, such as voids and pores, whose size, shape, and spatial distribution are mainly influenced by the so-called printing process parameters. Therefore, it is crucial to investigate their influence on the mechanical properties of FDM 3D-printed parts. This review starts with the identification of the printing process parameters that are considered to affect the micromechanical composition of FDM 3D-printed polymers. In what follows, their (negative) influence is attributed to characteristic mechanical properties. The remainder of this work reviews the state of the art in geometrical, numerical, and experimental analyses of FDM-printed parts. Finally, conclusions are drawn for each of the aforementioned analyses in view of microstructural modeling.

Topics
  • Deposition
  • impedance spectroscopy
  • pore
  • void
  • thermoplastic
  • additive manufacturing
  • field-flow fractionation