People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ronca, Alfredo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Bactericidal Activity of Silver-Doped Chitosan Coatings via Electrophoretic Deposition on Ti6Al4V Additively Manufactured Substratescitations
- 2023Optimization of Piezoresistive Response of Elastomeric Porous Structures Based on Carbon-Based Hybrid Fillers Created by Selective Laser Sinteringcitations
- 2022PEEK and Hyaluronan-Based 3D Printed Structures: Promising Combination to Improve Bone Regenerationcitations
- 2019In situ sol-gel synthesis of hyaluronan derivatives bio-nanocomposite hydrogelscitations
- 2018A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(ethylene glycol) Diacrylate Blendcitations
- 2016Viscoelastic properties of rapid prototyped magnetic nanocomposite scaffolds for osteochondral tissue regenerationcitations
- 2012Design of porous three-dimensional PDLLA/nano-hap composite scaffolds using stereolithographycitations
Places of action
Organizations | Location | People |
---|
article
Optimization of Piezoresistive Response of Elastomeric Porous Structures Based on Carbon-Based Hybrid Fillers Created by Selective Laser Sintering
Abstract
<jats:p>Recently, piezoresistive sensors made by 3D printing have gained considerable interest in the field of wearable electronics due to their ultralight nature, high compressibility, robustness, and excellent electromechanical properties. In this work, building on previous results on the Selective Laser Sintering (SLS) of porous systems based on thermoplastic polyurethane (TPU) and graphene (GE)/carbon nanotubes (MWCNT) as carbon conductive fillers, the effect of variables such as thickness, diameter, and porosity of 3D printed disks is thoroughly studied with the aim of optimizing their piezoresistive performance. The resulting system is a disk with a diameter of 13 mm and a thickness of 0.3 mm endowed with optimal reproducibility, sensitivity, and linearity of the electrical signal. Dynamic compressive strength tests conducted on the proposed 3D printed sensors reveal a linear piezoresistive response in the range of 0.1–2 N compressive load. In addition, the optimized system is characterized at a high load frequency (2 Hz), and the stability and sensitivity of the electrical signal are evaluated. Finally, an application test demonstrates the ability of this system to be used as a real-time wearable pressure sensor for applications in prosthetics, consumer products, and personalized health-monitoring systems.</jats:p>