People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Papadakis, Vassilis M.
University of West Attica
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Printability Metrics and Engineering Response of HDPE/Si3N4 Nanocomposites in MEX Additive Manufacturingcitations
- 2023Optimizing the Rheological and Thermomechanical Response of Acrylonitrile Butadiene Styrene/Silicon Nitride Nanocomposites in Material Extrusion Additive Manufacturingcitations
- 2023Medical-Grade PLA Nanocomposites with Optimized Tungsten Carbide Nanofiller Content in MEX Additive Manufacturing: A Rheological, Morphological, and Thermomechanical Evaluationcitations
- 2022Thermomechanical Response of Polycarbonate/Aluminum Nitride Nanocomposites in Material Extrusion Additive Manufacturingcitations
- 2016Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imagingcitations
Places of action
Organizations | Location | People |
---|
article
Medical-Grade PLA Nanocomposites with Optimized Tungsten Carbide Nanofiller Content in MEX Additive Manufacturing: A Rheological, Morphological, and Thermomechanical Evaluation
Abstract
<jats:p>The goal of this paper is to investigate tungsten carbide (WC) as a reinforcement in the popular material extrusion (MEX) additive manufacturing (AM) procedure. The impressive characteristics of WC demonstrate its potential as a valuable additive for commonly used polymeric matrices in MEX 3D printing, offering reinforcement and stabilization properties. The mechanical properties of hybrid polymer/ceramic nanocomposites made up of various filler loadings (0–10 wt. %) of medical-grade polylactic acid (PLA) and WC were studied. The mechanical characteristics, structure, and thermomechanical properties of the resulting compounds were fully characterized following the respective standards. The fracture mechanisms were revealed with Scanning Electron Microscopy. Overall, a laborious effort was implemented with fifteen different tests to fully characterize the nanocomposites prepared. In comparison to the raw PLA material, the tensile strength of the 4.0 wt. % WC PLA/WC nanocomposite was improved by 42.5% and the flexural strength by 41.9%. In the microhardness test, a 120.4% improvement was achieved, justifying the properties of WC ceramic. According to these findings, PLA nanocomposites reach high-performance polymer specifications, expanding their potential use, especially in wear-related applications.</jats:p>