People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brząkalski, Dariusz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Nanocomposites Based on Thermoplastic Acrylic Resin with the Addition of Chemically Modified Multi-Walled Carbon Nanotubescitations
- 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth compositescitations
- 2023Feldspar-Modified Methacrylic Composite for Fabrication of Prosthetic Teethcitations
- 2023Organosilicon Compounds in Hot-Melt Adhesive Technologiescitations
- 2023Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Propertiescitations
- 2022Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Reviewcitations
- 2022Where ppm Quantities of Silsesquioxanes Make a Difference—Silanes and Cage Siloxanes as TiO<inf>2</inf> Dispersants and Stabilizers for Pigmented Epoxy Resinscitations
- 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Compositescitations
- 2022Novel Multifunctional Spherosilicate-Based Coupling Agents for Improved Bond Strength and Quality in Restorative Dentistrycitations
- 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resinscitations
- 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Compositescitations
- 2021Why POSS-Type Compounds Should Be Considered Nanomodifiers, Not Nanofillers—A Polypropylene Blends Case Studycitations
- 2020Highly bulky spherosilicates as functional additives for polyethylene processing--Influence on mechanical and thermal propertiescitations
- 2019The influence of surface physicochemistry of solid fillers on dispersion in polyurea systems
Places of action
Organizations | Location | People |
---|
article
Organosilicon Compounds in Hot-Melt Adhesive Technologies
Abstract
<jats:p>Hot-melt adhesives (HMAs) are thermoplastic materials that can bond various substrates by solidifying rapidly upon cooling from the molten state, and their modification with organosilicon compounds can result in crosslinking behavior, characteristic of gels. Organosilicon compounds are hybrid molecules that have both inorganic and organic components and can enhance the properties and performance of HMAs. The gel aspect of HMA with and without organosilicon modifiers can be considered in organosilicon-modified systems, the modifiers are often either sol–gel condensation products or their mechanism of action on the adherent surface can be considered of sol–gel type. The purpose of this manuscript is to present the current state of the art on the formulation, characterization, and application of HMAs and optimize their performance with organosilicon compounds for application in various industries such as automotive, construction, and photovoltaics. This review covers articles published within the period of 2018–2022. The article is divided into sections, in which information about hot-melt adhesives is described at the beginning. The following part of the presented review focuses on the composition of hot-melt adhesives, which takes into account the use of organosilicon compounds. The last part of this review outlines the future trends in hot-melt adhesives.</jats:p>