People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lotfian, Saeid
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Low electric field induction in BaTiO3-epoxy nanocompositescitations
- 2023Effect of initial grain size on microstructure and mechanical properties of in situ hybrid aluminium nanocomposites fabricated by friction stir processingcitations
- 2023Low electric field induction in BaTiO 3 -epoxy nanocomposites
- 2023Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applicationscitations
- 2022Development of an injectable shear-thinning nanocomposite hydrogel for cardiac tissue engineeringcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire + arc additively manufactured mild steel componentscitations
- 2022Mechanical stress measurement using phased array ultrasonic system
- 2022Mechanical Activation-Assisted Solid-State Aluminothermic Reduction of CuO Powders for In-Situ Copper Matrix Composite Fabricationcitations
- 2022Assessment of mechanical and fatigue crack growth properties of wire+arc additively manufactured mild steel componentscitations
- 2021Remanufacturing the AA5052 GTAW welds using friction stir processingcitations
- 2020Effect of multi-pass friction stir processing on textural evolution and grain boundary structure of Al-Fe3O4 systemcitations
- 2019Ultra-thin electrospun nanofibers for development of damage-tolerant composite laminatescitations
- 2019Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2019Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Electrospun piezoelectric polymer nanofiber layers for enabling in situ measurement in high-performance composite laminatescitations
- 2018Development of damage tolerant composite laminates using ultra-thin interlaminar electrospun thermoplastic nanofibres
- 2018Towards the use of electrospun piezoelectric nanofibre layers for enabling in-situ measurement in high performance composite laminates
- 2015High temperature nanoindentation response of RTM6 epoxy resin at different strain ratescitations
- 2014Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminatescitations
- 2012High-temperature nanoindentation behavior of Al/SiC multilayerscitations
Places of action
Organizations | Location | People |
---|
article
Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applications
Abstract
This study investigated the relationship between the structure and mechanical properties of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive agent. The baghdadite nanoparticles were synthesised using the sol–gel method and incorporated into PCL films using the solvent casting technique. The results showed that adding baghdadite to PCL improved the nanocomposites’ tensile strength and elastic modulus, consistent with the results obtained from the prediction models of mechanical properties. The tensile strength increased from 16 to 21 MPa, and the elastic modulus enhanced from 149 to 194 MPa with fillers compared to test specimens without fillers. The thermal properties of the nanocomposites were also improved, with the degradation temperature increasing from 388 °C to 402 °C when 10% baghdadite was added to PCL. Furthermore, it was found that the nanocomposites containing baghdadite showed an apatite-like layer on their surfaces when exposed to simulated body solution (SBF) for 28 days, especially in the film containing 20% nanoparticles (PB20), which exhibited higher apatite density. The addition of baghdadite nanoparticles into pure PCL also improved the viability of MG63 cells, increasing the viability percentage on day five from 103 in PCL to 136 in PB20. Additionally, PB20 showed a favourable degradation rate in PBS solution, increasing mass loss from 2.63 to 4.08 per cent over four weeks. Overall, this study provides valuable insights into the structure–property relationships of biodegradable-bioactive nanocomposites, particularly those reinforced with new bioactive agents.