Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baudach, Felix

  • Google
  • 2
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Characterization and Modeling of Ply/Tool and Ply/Ply Slippage Phenomena of Unidirectional Polycarbonate CF Tapes5citations
  • 2023polymers / Characterization and Modeling of Ply/Tool and Ply/Ply Slippage Phenomena of Unidirectional Polycarbonate CF Tapes5citations

Places of action

Chart of shared publication
Miron, Matei C.
2 / 3 shared
Kapshammer, Andreas
2 / 4 shared
Major, Zoltan
2 / 11 shared
Laresser, Daniel
2 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Miron, Matei C.
  • Kapshammer, Andreas
  • Major, Zoltan
  • Laresser, Daniel
OrganizationsLocationPeople

article

Characterization and Modeling of Ply/Tool and Ply/Ply Slippage Phenomena of Unidirectional Polycarbonate CF Tapes

  • Miron, Matei C.
  • Kapshammer, Andreas
  • Major, Zoltan
  • Laresser, Daniel
  • Baudach, Felix
Abstract

<jats:p>Thermoplastic tapes are commonly processed by the rapid and efficient stamp forming process. During this forming process, the individual unidirectional tapes of the composite stack move relative to each other and relative to the surface of the tool while being in contact with the corresponding counterpart. As a result, the material exhibits a certain resistance against this movement, which is generally dependent on velocity, normal pressure, and temperature. Therefore, this work investigates the ply/tool and ply/ply slippage of unidirectional, carbon fiber reinforced polycarbonate tapes and provides an alternative implementation of the experimentally observed slippage using cohesive zone modeling. The backbone of the modeling approach is an experimental data set obtained from pull-through experiments. In comparison to common slippage or friction theories, the force plateau of thermoplastic UD tapes at elevated temperatures is observed after an initial force peak has been overcome. For both configurations, ply/tool and ply/ply, a reduction of the initial force peak was observed for increasing temperature. Furthermore, the resulting plateau force value is at least 36% higher in the ply/ply configuration compared to the ply/tool configuration at 200 °C. The derived cohesive zone model allows for accurate modeling of the initial force peak and the plateau.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • experiment
  • composite
  • forming
  • thermoplastic