Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ozkan, Basar

  • Google
  • 2
  • 3
  • 8

Loughborough University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023A Systematic Study on Impact of Binder Formulation on Green Body Strength of Vat-Photopolymerisation 3D Printed Silica Ceramics Used in Investment Casting8citations
  • 2022Vat-photopolymerisation 3D printing silica-based ceramic cores used in investment casting of hot section parts for aero and power turbinescitations

Places of action

Chart of shared publication
Veliyath, Varghese Paul
1 / 1 shared
Tarak, Fati̇h
1 / 1 shared
Sabet, Ehsan
1 / 3 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Veliyath, Varghese Paul
  • Tarak, Fati̇h
  • Sabet, Ehsan
OrganizationsLocationPeople

article

A Systematic Study on Impact of Binder Formulation on Green Body Strength of Vat-Photopolymerisation 3D Printed Silica Ceramics Used in Investment Casting

  • Ozkan, Basar
  • Veliyath, Varghese Paul
  • Tarak, Fati̇h
  • Sabet, Ehsan
Abstract

<jats:p>Additive ceramics manufacturing with vat-photopolymerisation (VP) is a developing field, and the need for suitable printing materials hinders its fast growth. Binder mixtures significantly influence the mechanical properties of printed ceramic bodies by VP, considering their rheological properties, curing performances and green body characteristics. Improving mechanical characteristics and reducing cracks during printing and post-processes is mainly related to binder formulations. The study aims to develop a binder formulation to provide the printed ceramic specimens with additional green strength. The impact on mechanical properties (ultimate tensile strength, flexural strength, Young’s and strain at breakpoint), viscosity and cure performance of Urethane Acrylate (UA) and thermoplastic Polyether Acrylate (PEA) oligomers to monofunctional N-Vinylpyrrolidone (NVP), 1,6-Hexanediol Diacrylate (HDDA) and Tri-functional Photocentric 34 (PC34) monomers were investigated under varying concentrations. The best mechanical characteristic was showcased when the PC34 was replaced with 20–30 wt.% of UA in the organic medium. The Thermogravimetric Analysis (TGA) and sintering test outcomes revealed that increasing the content of NVP in the organic medium (above 15 wt.%) leads to uncontrolled thermal degradation during debinding and defects on ceramic parts after sintering. The negative effect of UA on the viscosity of ceramic-loaded mixtures was controlled by eliminating the PC34 compound with NVP and HDDA, and optimum mechanical properties were achieved at 15 wt.% of NVP and 65 wt.% of HDDA. PEA is added to provide additional flexibility to the ceramic parts. It was found that strain and other mechanical parameters peaked at 15 wt.% of PEA. The study formulated the most suitable binder formulation on the green body strength of printing silica ceramics as 50 wt.% HDDA, 20 wt.% Urethane Acrylate, 15 wt.% NVP and 15 wt.% PEA.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • crack
  • strength
  • viscosity
  • flexural strength
  • thermogravimetry
  • tensile strength
  • ceramic
  • thermoplastic
  • sintering
  • curing
  • investment casting