People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Fawad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of Mg incorporation on the properties of PCL/Mg composites for potential tissue engineering applicationscitations
- 20233D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applicationscitations
- 2021Health risk assessment of heavy metals via consumption of dietary vegetables using wastewater for irrigation in Swabi, Khyber Pakhtunkhwa, Pakistancitations
- 2019Low hysteresis perovskite solar cells using e-beam evaporated WO3-x thin film as electron transport layercitations
- 2018[Front cover] Tuning the amount of oxygen vacancies in sputter-deposited SnOx films for enhancing the performance of perovskite solar cells (ChemSusChem 18/2018)
- 2018Optimization of Mo/Cr bilayer back contacts for thin-film solar cellscitations
- 2018Tuning of oxygen vacancy in sputter-deposited SnOx films for enhancing the performance of perovskite solar cellscitations
- 2017Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cellscitations
Places of action
Organizations | Location | People |
---|
article
3D-Printable PLA/Mg Composite Filaments for Potential Bone Tissue Engineering Applications
Abstract
<jats:p>Magnesium (Mg) is a promising material for bone tissue engineering applications due to it having similar mechanical properties to bones, biocompatibility, and biodegradability. The primary goal of this study is to investigate the potential of using solvent-casted polylactic acid (PLA) loaded Mg (WE43) composites as filament feedstock for fused deposition modeling (FDM) 3D Printing. Four PLA/Magnesium (WE43) compositions (5, 10, 15, 20 wt%) are synthesized and produced into filaments, then used to print test samples on an FDM 3D printer. Assessments are made on how Mg incorporation affected PLA’s thermal, physicochemical, and printability characteristics. The SEM study of the films shows that the Mg particles are uniformly distributed in all the compositions. The FTIR results indicate that the Mg particles blend well with the polymer matrix and there is no chemical reaction between the PLA and the Mg particles during the blending process. The thermal studies show that the addition of Mg leads to a small increase in the melting peak reaching a maximum of 172.8 °C for 20% Mg samples. However, there are no dramatic variations in the degree of crystallinity among the Mg-loaded samples. The filament cross-section images show that the distribution of Mg particles is uniform up to a concentration of 15% Mg. Beyond that, non-uniform distribution and an increase in pores in the vicinity of the Mg particles is shown to affect their printability. Overall, 5% and 10% Mg composite filaments were printable and have the potential to be used as composite biomaterials for 3D-printed bone implants.</jats:p>