Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bettencourt, Ana

  • Google
  • 2
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of the incorporation of coumponds into Digitally Manufactured Dental Materials- A systematic review.citations
  • 2023Understanding the Mechanical, Surface, and Color Behavior of Oral Bioactive Prosthetic Polymers under Biodegradation Processes5citations

Places of action

Chart of shared publication
Jorge, Catarina
1 / 1 shared
Neves, Cristina Bettencourt
2 / 3 shared
Anes, Vítor
1 / 1 shared
Costa, Joana
1 / 2 shared
Portugal, Jaime
1 / 14 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Jorge, Catarina
  • Neves, Cristina Bettencourt
  • Anes, Vítor
  • Costa, Joana
  • Portugal, Jaime
OrganizationsLocationPeople

article

Understanding the Mechanical, Surface, and Color Behavior of Oral Bioactive Prosthetic Polymers under Biodegradation Processes

  • Costa, Joana
  • Neves, Cristina Bettencourt
  • Portugal, Jaime
  • Bettencourt, Ana
Abstract

<jats:p>Changes in the properties of resin-based polymers exposed to the oral environment can emerge when chlorhexidine (CHX) is incorporated to develop bioactive systems for treating denture stomatitis. Three reline resins loaded with CHX were prepared: 2.5 wt% in Kooliner (K), 5 wt% in Ufi Gel Hard (UFI), and Probase Cold (PC). A total of 60 specimens were submitted to physical aging (1000 cycles of thermal fluctuations, 5–55 °C) or chemical aging (28 days of pH fluctuations in artificial saliva, 6 h at pH = 3, 18 h at pH = 7). Knoop microhardness (30 s, 98 mN), 3-point flexural strength (5 mm/min), and surface energy were tested. Color changes (ΔE) were determined using the CIELab system. Data were submitted to non-parametric tests (α = 0.05). After aging, bioactive K and UFI specimens were not different from the controls (resins without CHX) in mechanical and surface properties. Thermally aged CHX-loaded PC specimens showed decreased microhardness and flexural strength but not under adequate levels for function. The color change was observed in all CHX-loaded specimens that underwent chemical aging. The long-term use of CHX bioactive systems based on reline resins generally does not impair removable dentures’ proper mechanical and aesthetic functions.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • strength
  • flexural strength
  • aging
  • resin
  • aging
  • surface energy
  • mechanical and surface