People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Terzopoulou, Zoi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Valorization of Tomato Agricultural Waste for 3D-Printed Polymer Composites Based on Poly(lactic acid)citations
- 2023Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing
- 2023Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processingcitations
- 2022Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactidecitations
- 2021Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)- co -Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusion
- 2021Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadingscitations
- 2021Synthesis and Characterization of Unsaturated Succinic Acid Biobased Polyester Resinscitations
- 2021Preparation of green montmorillonite/carbon nanotubes hybrid by lyophilization procedure for poly(lactic acid) nanocomposite
- 2021Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillerscitations
- 2021Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)-co-Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusioncitations
- 2019Sustainable thermoplastics from renewable resources:Thermal behavior of poly(1,4-cyclohexane dimethylene 2,5-furandicarboxylate)citations
- 2019Sustainable thermoplastics from renewable resourcescitations
- 2018Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly(ε-caprolactone)citations
- 2018Synthesis and characterization of in-situ-prepared nanocomposites based on poly(propylene 2,5-furan dicarboxylate) and aluminosilicate clayscitations
- 2017Effect of MWCNTs and their modification on crystallization and thermal degradation of poly(butylene naphthalate)citations
- 2014Effect of nanofiller's size and shape on the solid state microstructure and thermal properties of poly(butylene succinate) nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing
Abstract
<jats:p>Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.</jats:p>