Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yarakhmedov, Murtazali

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth11citations

Places of action

Chart of shared publication
Nguyen, Thanh Hung
1 / 3 shared
Manakov, Andrey
1 / 1 shared
Semenov, Anton
1 / 1 shared
Statsenko, Evgeny
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nguyen, Thanh Hung
  • Manakov, Andrey
  • Semenov, Anton
  • Statsenko, Evgeny
OrganizationsLocationPeople

article

Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth

  • Nguyen, Thanh Hung
  • Yarakhmedov, Murtazali
  • Manakov, Andrey
  • Semenov, Anton
  • Statsenko, Evgeny
Abstract

<jats:p>Polymeric models of the core prepared with a Raise3D Pro2 3D printer were employed for methane hydrate formation. Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), carbon fiber reinforced (UltraX), thermoplastic polyurethane (PolyFlex), and polycarbonate (ePC) were used for printing. Each plastic core was rescanned using X-ray tomography to identify the effective porosity volumes. It was revealed that the polymer type matters in enhancing methane hydrate formation. All polymer cores except PolyFlex promoted the hydrate growth (up to complete water-to-hydrate conversion with PLA core). At the same time, changing the filling degree of the porous volume with water from partial to complete decreased the efficiency of hydrate growth by two times. Nevertheless, the polymer type variation allowed three main features: (1) managing the hydrate growth direction via water or gas preferential transfer through the effective porosity; (2) the blowing of hydrate crystals into the volume of water; and (3) the growth of hydrate arrays from the steel walls of the cell towards the polymer core due to defects in the hydrate crust, providing an additional contact between water and gas. These features are probably controlled by the hydrophobicity of the pore surface. The proper filament selection allows the hydrate formation mode to be set for specific process requirements.</jats:p>

Topics
  • porous
  • pore
  • surface
  • Carbon
  • tomography
  • steel
  • porosity
  • thermoplastic