Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taibi, Jamila

  • Google
  • 4
  • 6
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023One-Step Multifunctionalization of Flax Fabrics for Simultaneous Flame-Retardant and Hydro-Oleophobic Properties Using Radiation-Induced Graft Polymerization5citations
  • 2022Flame retardancy of flax fibers by pre-irradiation grafting of a phosphonate monomer17citations
  • 2021Radio-grafting of phosphorus flame retardant on flax fabrics: Pre-irradiation methodcitations
  • 2021Modification of Flax Fabrics by Pre-Irradiation Graftings of Phosphorus-Based Flame Retardantscitations

Places of action

Chart of shared publication
Ameduri, Bruno
4 / 105 shared
Sonnier, Rodolphe
4 / 58 shared
Rouif, Sophie
4 / 6 shared
Otazaghine, Belkacem
4 / 32 shared
Clément, Jean-Louis
2 / 3 shared
Clement, Jean-Louis
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Ameduri, Bruno
  • Sonnier, Rodolphe
  • Rouif, Sophie
  • Otazaghine, Belkacem
  • Clément, Jean-Louis
  • Clement, Jean-Louis
OrganizationsLocationPeople

article

One-Step Multifunctionalization of Flax Fabrics for Simultaneous Flame-Retardant and Hydro-Oleophobic Properties Using Radiation-Induced Graft Polymerization

  • Taibi, Jamila
  • Ameduri, Bruno
  • Sonnier, Rodolphe
  • Rouif, Sophie
  • Otazaghine, Belkacem
Abstract

<jats:p>This study concerns the one-step radiografting of flax fabrics with phosphonated and fluorinated polymer chains using (meth)acrylic monomers: dimethyl(methacryloxy)methyl phosphonate (MAPC1), 2-(perfluorobutyl)ethyl methacrylate (M4), 1H,1H,2H,2H-perfluorooctyl acrylate (AC6) and 1H,1H,2H,2H-perfluorodecyl methacrylate (M8). The multifunctionalization of flax fabrics using a pre-irradiation procedure at 20 and 100 kGy allows simultaneously providing them with flame retardancy and hydro- and oleophobicity properties. The successful grafting of flax fibers is first confirmed by FTIR spectroscopy. The morphology of the treated fabrics, the regioselectivity of grafting and the distribution of the fluorine and phosphorus elements are assessed by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The flame retardancy is evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. The hydro- and oleophobicity and water repellency of the treated fabrics is established by contact angle and sliding angle measurements, respectively. The grafting treatment of flax irradiated at 100 KGy, using M8 and MAPC1 monomers (50:50) for 24 h, allows achieving fluorine and phosphorus contents of 8.04 wt% and 0.77 wt%, respectively. The modified fabrics display excellent hydro-oleophobic and flame-retardant properties with water and diiodomethane contact angles of 151° and 131°, respectively, and a large decrease in peak of heat release rate (pHRR) compared to pristine flax (from 230 W/g to 53 W/g). Relevant results are also obtained for M4 and AC6 monomers in combination with MAPC1. For the flame retardancy feature, the presence of fluorinated groups does not disturb the effect of phosphorus.</jats:p>

Topics
  • pyrolysis
  • impedance spectroscopy
  • morphology
  • polymer
  • scanning electron microscopy
  • combustion
  • Energy-dispersive X-ray spectroscopy
  • Phosphorus
  • cone calorimetry