Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Théato, Patrick

  • Google
  • 12
  • 47
  • 107

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteries4citations
  • 2024Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopy2citations
  • 2023Magnesium Polymer Electrolytes Based on the Polycarbonate Poly(2-butyl-2-ethyltrimethylene-carbonate)citations
  • 2023Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains2citations
  • 2023Photoresponsive Spiropyran and DEGMA‐Based Copolymers with Photo‐Switchable Glass Transition Temperatures6citations
  • 2023Poly(ethylene oxide)-grafted Polycarbonates as Solvent-free Polymer Electrolytes for Lithium-Metal Batteriescitations
  • 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds25citations
  • 2022Synthesis and Characterization of Novel Isosorbide‐Based Polyester Derivatives Decorated with α ‐Acyloxy Amides3citations
  • 2022Synthesizing Polyethylene from Polyacrylates: A Decarboxylation Approach22citations
  • 2021Synthesis and Post-Polymerization Modification of Poly(N-(4-Vinylphenyl)Sulfonamide)s5citations
  • 2020The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application23citations
  • 2020A CO$_{2}$-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification15citations

Places of action

Chart of shared publication
Voll, Dominik
2 / 4 shared
Kolesnikov, Timofey I.
1 / 1 shared
Jeschull, Fabian
2 / 5 shared
Rauska, Ulf-Christian
1 / 1 shared
Khudyshkina, Anna
1 / 1 shared
Xing, Silin
1 / 1 shared
Butzelaar, Andreas J.
2 / 2 shared
Tübke, Jens
1 / 9 shared
Hirschberg, Valerian
1 / 16 shared
Sundermann, David A.
1 / 1 shared
Park, Bumjun
1 / 2 shared
Schaefer, Jennifer L.
1 / 4 shared
Siozios, Vassilios
1 / 1 shared
Krämer, Susanna
1 / 2 shared
Krause, Daniel T.
1 / 1 shared
Wiemhöfer, Hans-Dieter
1 / 2 shared
Winter, Martin
1 / 25 shared
Grünebaum, Mariano
1 / 1 shared
Förster, Beate
1 / 1 shared
Dulle, Martin
1 / 6 shared
Förster, Stephan
1 / 11 shared
Mayer, Joachim
1 / 30 shared
Akae, Yosuke
1 / 2 shared
Pruthi, Vaishali
1 / 1 shared
Subarew, Marvin
1 / 2 shared
Meier, Michael
1 / 3 shared
Hoffmann, M.
1 / 28 shared
Falkenstein, P.
1 / 1 shared
Rutschmann, M.
1 / 1 shared
Scheiger, V. W.
1 / 1 shared
Urbschat, K.
1 / 1 shared
Scheiger, J. M.
1 / 2 shared
Sengpiel, T.
1 / 1 shared
Matysik, J.
1 / 1 shared
Levkin, Pavel A.
1 / 5 shared
Grimm, A.
1 / 3 shared
Wilhelm, M.
1 / 11 shared
Döpping, Daniel
1 / 1 shared
Rotter, Nicole
1 / 1 shared
Llevot, Audrey
1 / 2 shared
Mutlu, Hatice
3 / 10 shared
Kern, Johann
1 / 1 shared
Frech, Stefan
1 / 1 shared
Molle, Edgar
1 / 1 shared
Huang, Xia
1 / 1 shared
Huang, X.
1 / 13 shared
Mutlu, H.
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Voll, Dominik
  • Kolesnikov, Timofey I.
  • Jeschull, Fabian
  • Rauska, Ulf-Christian
  • Khudyshkina, Anna
  • Xing, Silin
  • Butzelaar, Andreas J.
  • Tübke, Jens
  • Hirschberg, Valerian
  • Sundermann, David A.
  • Park, Bumjun
  • Schaefer, Jennifer L.
  • Siozios, Vassilios
  • Krämer, Susanna
  • Krause, Daniel T.
  • Wiemhöfer, Hans-Dieter
  • Winter, Martin
  • Grünebaum, Mariano
  • Förster, Beate
  • Dulle, Martin
  • Förster, Stephan
  • Mayer, Joachim
  • Akae, Yosuke
  • Pruthi, Vaishali
  • Subarew, Marvin
  • Meier, Michael
  • Hoffmann, M.
  • Falkenstein, P.
  • Rutschmann, M.
  • Scheiger, V. W.
  • Urbschat, K.
  • Scheiger, J. M.
  • Sengpiel, T.
  • Matysik, J.
  • Levkin, Pavel A.
  • Grimm, A.
  • Wilhelm, M.
  • Döpping, Daniel
  • Rotter, Nicole
  • Llevot, Audrey
  • Mutlu, Hatice
  • Kern, Johann
  • Frech, Stefan
  • Molle, Edgar
  • Huang, Xia
  • Huang, X.
  • Mutlu, H.
OrganizationsLocationPeople

article

Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains

  • Siozios, Vassilios
  • Krämer, Susanna
  • Krause, Daniel T.
  • Wiemhöfer, Hans-Dieter
  • Winter, Martin
  • Butzelaar, Andreas J.
  • Grünebaum, Mariano
  • Förster, Beate
  • Dulle, Martin
  • Förster, Stephan
  • Théato, Patrick
  • Mayer, Joachim
Abstract

Poly(ethylene oxide) block copolymers (PEO$_z$ BCP) have been demonstrated to exhibit remarkably high lithium ion (Li$^+$) conductivity for Li$^+$ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PI$_x$PS$_y$PEO$_z$), a pronounced maximum ion conductivity was reported for short PEO$_z$ molecular weights around 2 kg mol$^{−1}$. To later enable a systematic exploration of the influence of the PI$_x$ and PS$_y$ block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEO$_z$ block length can be kept constant, while the PI$_x$ and PS$_y$ block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEO$_z$ chains to terminate PI$_x$PS$_y$ BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PI$_x$PS$_y$PEO$_z$ with narrow chain length distribution and a fixed PEO$_z$ block length of z = 1.9 kg mol$^{−1}$ and a Đ = 1.03 are obtained. The successful quantitative end group modification of the PEO$_z$ block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEO$_z$ BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li$^+$ conductivity in Li$^+$ batteries.

Topics
  • impedance spectroscopy
  • morphology
  • scanning electron microscopy
  • transmission electron microscopy
  • differential scanning calorimetry
  • casting
  • Lithium
  • molecular weight
  • copolymer
  • Nuclear Magnetic Resonance spectroscopy
  • block copolymer
  • small angle x-ray scattering
  • gel filtration chromatography