Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gemmeke, Nicole

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of Accelerated Aging on the Fiber-Matrix Adhesion of Regenerated Cellulose Fiber-Reinforced Bio-Polyamide12citations

Places of action

Chart of shared publication
Falkenreck, Celia Katharina
1 / 1 shared
Heim, Hans-Peter
1 / 104 shared
Zarges, Jan-Christoph
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Falkenreck, Celia Katharina
  • Heim, Hans-Peter
  • Zarges, Jan-Christoph
OrganizationsLocationPeople

article

Influence of Accelerated Aging on the Fiber-Matrix Adhesion of Regenerated Cellulose Fiber-Reinforced Bio-Polyamide

  • Falkenreck, Celia Katharina
  • Heim, Hans-Peter
  • Gemmeke, Nicole
  • Zarges, Jan-Christoph
Abstract

<jats:p>With regard to the sustainability and biological origin of plastic components, regenerated cellulose fiber (RCF)-reinforced polymers are expected to replace other composites in the future. For use under severe conditions, for example, as a housing in the engine compartment, the resistance of the composites and the impact on the fiber and fiber-matrix adhesion must be investigated. Composites of bio-polyamide with a reinforcement of 20 wt.% RCF were compounded using a twin-screw extruder. The test specimens were manufactured with an injection molding machine and aged under conditions of high humidity at 90% r. H, a high temperature of 70 °C, and water storage using a water temperature of 23 °C for 504 h. Mechanical tests, single-fiber tensile tests (SFTT), single-fibre pull-out tests (SFPT), and optical characterization revealed significant changes in the properties of the composites. The results of the SFPT show that accelerated aging had a significant effect on the bio-polymer and an even stronger effect on the fiber, as the single-fiber tensile strength decreased by 27.5%. Supplementary notched impact strength tests revealed a correlation of the impact strength and the accelerated aging of the RCF-reinforced composites. In addition, it could be verified that the tensile strength also decreased at about 37% due to the aging effect on the RCF and a lowered fiber-matrix adhesion. The largest aging impact was on the Young’s modulus with a decrease of 45% due to the accelerated aging. In summary, the results show that the strengthening effect with 20 wt.% RCF was highly decreased subsequent to the accelerated aging due to hydrolysis and debonding because of the shrinkage and swelling of the matrix and fiber. These scientific findings are essential, as it is important to ensure that this bio-based material used in the automotive sector can withstand these stresses without severe degradation. This study provides information about the aging behavior of RCF-reinforced bio-based polyamide, which provides fundamental insights for future research.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • composite
  • aging
  • tensile strength
  • injection molding
  • cellulose
  • aging