Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dobrucka, Renata

  • Google
  • 9
  • 24
  • 96

Poznań University of Economics and Business

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Comprehensive study upon physicochemical properties of bio-ZnO NCs7citations
  • 2023Beeswax as a natural alternative to synthetic waxes for fabrication of PLA/diatomaceous earth composites18citations
  • 2023Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method7citations
  • 2023Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties9citations
  • 2022Biocomposites Based on Polyamide 11/Diatoms with Different Sized Frustules8citations
  • 2022Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites16citations
  • 2021Methodological Aspects of Obtaining and Characterizing Composites Based on Biogenic Diatomaceous Silica and Epoxy Resins8citations
  • 2021Phytotoxic effects of biosynthesized ZnO nanoparticles using Betonica officinalis extract7citations
  • 2021A New Method of Diatomaceous Earth Fractionation—A Bio-Raw Material Source for Epoxy-Based Composites16citations

Places of action

Chart of shared publication
Railean, Viorica
1 / 1 shared
Buszewski, Bogusław
2 / 3 shared
Gloc, Michał
4 / 17 shared
Pomastowski, Paweł
1 / 2 shared
Król-Górniak, Anna
1 / 1 shared
Plocinski, Tomasz
2 / 15 shared
Kurzydlowski, Krzysztof
4 / 7 shared
Dobrosielska, Marta
6 / 11 shared
Kozera, Paulina
4 / 14 shared
Kurzydłowski, Krzysztof J.
4 / 9 shared
Brząkalski, Dariusz
5 / 14 shared
Głowacka, Julia
3 / 6 shared
Przekop, Robert
7 / 35 shared
Jałbrzykowski, Marek
3 / 8 shared
Gabriel, Ewa
3 / 8 shared
Viorica, Railean
1 / 1 shared
Pawel, Pomastowski
1 / 1 shared
Martyla, Agnieszka
1 / 5 shared
Kołodziejczak, Marta
1 / 1 shared
Kozera, Rafał
1 / 22 shared
Wieczorek, Monika
1 / 1 shared
Frydrych, Miłosz
1 / 10 shared
Rębiś, Janusz
1 / 4 shared
Szymański, Marcin
2 / 4 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Railean, Viorica
  • Buszewski, Bogusław
  • Gloc, Michał
  • Pomastowski, Paweł
  • Król-Górniak, Anna
  • Plocinski, Tomasz
  • Kurzydlowski, Krzysztof
  • Dobrosielska, Marta
  • Kozera, Paulina
  • Kurzydłowski, Krzysztof J.
  • Brząkalski, Dariusz
  • Głowacka, Julia
  • Przekop, Robert
  • Jałbrzykowski, Marek
  • Gabriel, Ewa
  • Viorica, Railean
  • Pawel, Pomastowski
  • Martyla, Agnieszka
  • Kołodziejczak, Marta
  • Kozera, Rafał
  • Wieczorek, Monika
  • Frydrych, Miłosz
  • Rębiś, Janusz
  • Szymański, Marcin
OrganizationsLocationPeople

article

Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties

  • Dobrosielska, Marta
  • Martyla, Agnieszka
  • Kozera, Paulina
  • Kurzydłowski, Krzysztof J.
  • Brząkalski, Dariusz
  • Dobrucka, Renata
  • Przekop, Robert
  • Gabriel, Ewa
Abstract

<jats:p>Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two constituents is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had been subjected to silanization. The produced composites were used to carry out rheological (melt flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic (X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry–DSC, dynamic mechanical thermal analysis–DMTA) analyses, as well as a study of hydrophobic–hydrophilic properties of the material surface (wetting angle) and imaging of the surface of the composites and the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES) acted as an agent that improved the elasticity of composites and the melt flow rate. In addition, the produced composites showed a hydrophilic surface profile compared to pure polylactide and polyamide 11.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • x-ray diffraction
  • melt
  • strength
  • composite
  • elasticity
  • differential scanning calorimetry
  • tensile strength
  • crystallization
  • atom probe tomography