People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Savović, Svetislav
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Wavelength dependent transmission in multimode graded-index microstructured polymer optical fiberscitations
- 2023Correction: Savović et al. Power Flow in Multimode Graded-Index Microstructured Polymer Optical Fibers. Polymers 2023, 15, 1474
- 2023Power Flow in Multimode Graded-Index Microstructured Polymer Optical Fiberscitations
- 2022Mode Coupling and Steady-State Distribution in Multimode Step-Index Organic Glass-Clad PMMA Fiberscitations
- 2022Treatment of Mode Coupling in Step-Index Multimode Microstructured Polymer Optical Fibers by the Langevin Equationcitations
- 2022Influence of the Width of Launch Beam Distribution on the Transmission Performance of Seven-Core Polymer-Clad Silica Fiberscitations
Places of action
Organizations | Location | People |
---|
article
Power Flow in Multimode Graded-Index Microstructured Polymer Optical Fibers
Abstract
<jats:p>We investigate mode coupling in a multimode graded-index microstructured polymer optical fiber (GI mPOF) with a solid core by solving the time-independent power flow equation (TI PFE). Using launch beams with various radial offsets, it is possible to calculate for such an optical fiber the transients of the modal power distribution, the length Lc at which an equilibrium mode distribution (EMD) is reached, and the length zs for establishing a steady-state distribution (SSD). In contrast to the conventional GI POF, the GI mPOF explored in this study achieves the EMD at a shorter length Lc. The earlier shift to the phase of slower bandwidth decrease would result from the shorter Lc. These results are helpful for the implementation of multimode GI mPOFs as a part of communications and optical fiber sensory systems.</jats:p>