Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berthé, Vincent

  • Google
  • 3
  • 8
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-124citations
  • 2023On the Addition of Multifunctional Methacrylate Monomers to an Acrylic-Based Infusible Resin for the Weldability of Acrylic-Based Glass Fibre Composites2citations
  • 2021Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring36citations

Places of action

Chart of shared publication
Vaudemont, Régis
2 / 2 shared
Perrin, Henri
3 / 4 shared
Klein, Sébastien
1 / 2 shared
Bodaghi, Masoud
2 / 6 shared
Mashayekhi, Fatemeh
1 / 2 shared
Addiego, Frédéric
1 / 6 shared
Bardon, Julien
1 / 12 shared
Westermann, Stephan
1 / 6 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Vaudemont, Régis
  • Perrin, Henri
  • Klein, Sébastien
  • Bodaghi, Masoud
  • Mashayekhi, Fatemeh
  • Addiego, Frédéric
  • Bardon, Julien
  • Westermann, Stephan
OrganizationsLocationPeople

article

On the Addition of Multifunctional Methacrylate Monomers to an Acrylic-Based Infusible Resin for the Weldability of Acrylic-Based Glass Fibre Composites

  • Berthé, Vincent
  • Vaudemont, Régis
  • Perrin, Henri
  • Bodaghi, Masoud
Abstract

<jats:p>The melt strength of Elium® acrylic resin is an important factor to ensure limited fluid flow during welding. To provide Elium® with a suitable melt strength via a slight crosslink, this study examines the effect of two dimethacrylates, namely butanediol-di-methacrylate (BDDMA) and tricyclo-decane-dimethanol-di-methacrylate (TCDDMDA), on the weldability of acrylic-based glass fibre composites. The resin system impregnating a five-layer woven glass preform is a mixture of Elium® acrylic resin, an initiator, and each of the multifunctional methacrylate monomers in the range of 0 to 2 parts per hundred resin (phr). Composite plates are manufactured by vacuum infusion (VI) at an ambient temperature and welded by using the infrared (IR) welding technique. The mechanical thermal analysis of the composites containing multifunctional methacrylate monomers higher than 0.25 phr shows a very little strain for the temperature range of 50 °C to 220 °C. The quantity of 0.25 phr of both of the multifunctional methacrylate monomers in the Elium® matrix improves the maximum bound shear strength of the weld by 50% compared to those compositions without the multifunctional methacrylate monomers.</jats:p>

Topics
  • impedance spectroscopy
  • melt
  • glass
  • glass
  • strength
  • composite
  • thermal analysis
  • resin
  • woven