People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Monteiro, Sergio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Phase Composition and Temperature Effect on the Dynamic Young’s Modulus, Shear Modulus, Internal Friction, and Dilatometric Changes in AISI 4130 Steelcitations
- 2023Use of Yarn and Carded Jute as Epoxy Matrix Reinforcement for the Production of Composite Materials for Application in the Wind Sector: A Preliminary Analysis for the Manufacture of Blades for Low-Intensity Windscitations
- 2023Evaluation of Composites Reinforced by Processed and Unprocessed Coconut Husk Powdercitations
- 2023Mechanical Properties Optimization of Hybrid Aramid and Jute Fabrics-Reinforced Graphene Nanoplatelets in Functionalized HDPE Matrix Nanocompositescitations
- 2022Influence of Silanization Treatment of Sponge Gourd (Luffa cylindrica) Fibers on the Reinforcement of Polyester Composites: A Brief Reportcitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of Composites Reinforced by Processed and Unprocessed Coconut Husk Powder
Abstract
<jats:p>Engineering activities aim to satisfy the demands of society. Not only should the economic and technological aspects be considered, but also the socio-environmental impact. In this sense, the development of composites with the incorporation of waste has been highlighted, aiming not only for better and/or cheaper materials, but also optimizing the use of natural resources. To obtain better results using industrial agro waste, we need to treat this waste to incorporate engineered composites and obtain the optimal results for each application desired. The objective of this work is to compare the effect of processing coconut husk particulates on the mechanical and thermal behavior of epoxy matrix composites, since we will need a smooth composite in the near future to be applied by brushes and sprayers with a high quality surface finish. This processing was carried out in a ball mill for 24 h. The matrix was a Bisphenol A diglycidyl ether (DGEBA)/triethylenetetramine (TETA) epoxy system. The tests that were performed were resistance to impact and compression, as well as the linear expansion test. Through this work, it can be observed that the processing of coconut husk powder was beneficial, allowing not only positive improvements to the properties of the composite, but also a better workability and wettability of the particulates, which was attributed to the change in the average size and shape of particulates. That means that the composites with processed coconut husk powders have improved impact strength (46 up to 51%) and compressive strength (88 up to 334%), in comparison with unprocessed particles.</jats:p>