People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guerrero, Victor H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Analytical Pyrolysis of Pinus radiata and Eucalyptus globulus: Effects of Microwave Pretreatment on Pyrolytic Vapours Compositioncitations
- 2023KOH-Based Hydrothermal Synthesis of Iron-Rich Titanate Nanosheets Assembled into 3D Hierarchical Architectures from Natural Ilmenite Mineral Sandscitations
- 2023Optimization of Compression and Flexural Properties of Masonry Veneers with Recycled PET-1citations
- 2020Tailoring Organic-Organic Poly(vinylpyrrolidone) Microparticles and Fibers with Multiwalled Carbon Nanotubes for Reinforced Compositescitations
Places of action
Organizations | Location | People |
---|
article
Optimization of Compression and Flexural Properties of Masonry Veneers with Recycled PET-1
Abstract
<jats:p>The study of new materials formulated using recycled polymers offers an ecological and sustainable alternative for the construction industry. In this work, we optimized the mechanical behavior of manufactured masonry veneers made from concrete reinforced with recycled polyethylene terephthalate (PET) from discarded plastic bottles. For this purpose, we used the response surface methodology to evaluate the compression and flexural properties. PET percentage, PET size and aggregate size were used as input factors in a Box–Behnken experimental design resulting in a total of 90 tests. The fraction of the commonly used aggregates replaced by PET particles was 15%, 20% and 25%. The nominal size of the PET particles used was 6, 8 and 14 mm, while the size of the aggregates was 3, 8 and 11 mm. The function of desirability was used to optimize response factorials. The globally optimized formulation contained 15% of 14 mm PET particles in the mixture, and 7.36 mm aggregates, obtaining important mechanical properties of this characterization of masonry veneers. The flexural strength (four-point) was 1.48 MPa, and the compression strength was 3.96 MPa; these values show property improvements of 110% and 94%, respectively, compared to commercial masonry veneers. Overall, this offers the construction industry a robust and environmentally friendly alternative.</jats:p>