People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Platnieks, Oskars
Riga Technical University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Poly(Butylene Succinate) Hybrid Multi-Walled Carbon Nanotube/Iron Oxide Nanocomposites: Electromagnetic Shielding and Thermal Propertiescitations
- 2023Fully bio-based thermoset composites from UV curable prepregs: Vegetable oil acrylate impregnated hemp nanopapercitations
- 2023Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Applicationcitations
- 2023Sustainable hemp-based bioplastics with tunable properties via reversible thermal crosslinking of cellulosecitations
- 2022Sustainable Wax Coatings Made from Pine Needle Extraction Waste for Nanopaper Hydrophobizationcitations
- 2022Understanding the Impact of Microcrystalline Cellulose Modification on Durability and Biodegradation of Highly Loaded Biocomposites for Woody Like Materials Applicationscitations
- 2022Data on FTIR, photo-DSC and dynamic DSC of triethylene glycol dimethacrylate and N-vinylpyrrolidone copolymerization in the presence of ionic liquidscitations
- 2022Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applicationscitations
- 2022Hydrothermal Ageing Effect on Reinforcement Efficiency of Nanofibrillated Cellulose/Biobased Poly(butylene succinate) Compositescitations
- 2021Lignin and Xylan as Interface Engineering Additives for Improved Environmental Durability of Sustainable Cellulose Nanopaperscitations
- 2021Adding value to poly (butylene succinate) and nanofibrillated cellulose-based sustainable nanocomposites by applying masterbatch processcitations
- 2021Cellulose Nanocrystals vs. Cellulose Nanofibers: A Comparative Study of Reinforcing Effects in UV-Cured Vegetable Oil Nanocompositescitations
- 2020Biorefinery Approach for Aerogelscitations
- 2020Sustainable tetra pak recycled cellulose / Poly(Butylene succinate) based woody-like composites for a circular economycitations
- 2020Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites:Thermo-mechanical and biodegradation studiescitations
- 2020Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studiescitations
- 2020Bio-Based Poly(butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose-Based Sustainable Polymer Composites: Thermo-Mechanical and Biodegradation Studiescitations
- 2019Highly loaded cellulose/poly (butylene succinate) sustainable composites for woody-like advanced materials applicationcitations
Places of action
Organizations | Location | People |
---|
article
Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Application
Abstract
<jats:p>Bulk polylactic acid (PLA)/multiwall carbon nanotube (MWCNT) composites were prepared and investigated in wide frequency ranges (20 Hz–1 MHz and 24–40 GHz). It was determined that the percolation threshold in bulk PLA/MWCNT composites is close to 0.2 vol.% MWCNT. However, the best microwave dielectric properties and absorption were observed in composites with 3.0–5.0 vol.% MWCNT. Therefore, for future investigations, we selected layered (laminate) polymeric structures with gradual changes in MWCNT concentration from 0.2 to 8.0 vol.% MWCNT. Two approaches to laminate structure designs were examined and compared: a five-layer composite and a nine-layer composite that included four pure PLA middle layers. The addition of MWCNT enhanced the elastic modulus by up to 1.4-fold and tensile strength by up to 1.2-fold, with the best performance achieved at 5.0 vol.% loading. High microwave shielding was observed for these layered PLA/MWCNT structures with a gradient change in MWCNT concentration (up to 26 dB in both transmission and absorption coefficients) in the broad frequency range (from 24 to 40 GHz). Obtained structures are highly anisotropic, and the absorption coefficient is 2–5 dB higher in the direction of MWCNT concentration increase; however, the transmission coefficient is the same in both directions. The properties of microwave absorption are mainly unaffected by the additional polymeric layers. The absorption of the layered structure is greater than the absorption of single-layer composites with an optimal MWCNT concentration of the same thickness. The proposed laminate structure design is promising in the field of efficient electromagnetic shielding.</jats:p>