People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khachatryan, Gohar
University of Agriculture in Krakow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Formation and Investigation of Physicochemical and Microbiological Properties of Biocomposite Films Containing Turmeric Extract Nano/Microcapsulescitations
- 2023Design of Carbon Nanocomposites Based on Sodium Alginate/Chitosan Reinforced with Graphene Oxide and Carbon Nanotubescitations
- 2021Hyaluronic Acid-Silver Nanocomposites and Their Biomedical Applications: A Reviewcitations
- 2021Synthesis of Silver and Gold Nanoparticles in Sodium Alginate Matrix Enriched with Graphene Oxide and Investigation of Properties of the Obtained Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
Design of Carbon Nanocomposites Based on Sodium Alginate/Chitosan Reinforced with Graphene Oxide and Carbon Nanotubes
Abstract
<jats:p>The aim of this study was to use a simple, low-cost and environmentally friendly synthesis method to design nanocomposites. For this purpose, carbon nanostructures were used to reinforce the chitosan/alginate bond in order to improve the mechanical, solubility, water absorption and barrier (protection against UV radiation) properties of the chitosan/alginate structure. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet and visible light absorption spectroscopy (UV-VIS) and color analysis were utilized, and the thickness and mechanical properties of the obtained films were determined. The tests that were carried out showed an equal distribution of nanostructures in the composite material and the absence of chemical interactions between nanoparticles and polymers. It was also proven that the enrichment of the polysaccharide composite with graphene oxide and carbon nanotubes positively affected its absorption, mechanical capabilities and color.</jats:p>