Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barud, Hernane Da Silva

  • Google
  • 1
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes12citations

Places of action

Chart of shared publication
Takehara Paschoalin, Rafaella
1 / 4 shared
Claro, Amanda Maria
1 / 2 shared
Faraco, Thales Alves
1 / 2 shared
Cremona, Marco
1 / 6 shared
Gonçalves, Isabella Salgado
1 / 1 shared
Cavicchioli, Mauricio
1 / 1 shared
Fontes, Marina De Lima
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Takehara Paschoalin, Rafaella
  • Claro, Amanda Maria
  • Faraco, Thales Alves
  • Cremona, Marco
  • Gonçalves, Isabella Salgado
  • Cavicchioli, Mauricio
  • Fontes, Marina De Lima
OrganizationsLocationPeople

article

Review of Bacterial Nanocellulose as Suitable Substrate for Conformable and Flexible Organic Light-Emitting Diodes

  • Takehara Paschoalin, Rafaella
  • Claro, Amanda Maria
  • Barud, Hernane Da Silva
  • Faraco, Thales Alves
  • Cremona, Marco
  • Gonçalves, Isabella Salgado
  • Cavicchioli, Mauricio
  • Fontes, Marina De Lima
Abstract

<jats:p>As the development of nanotechnology progresses, organic electronics have gained momentum in recent years, and the production and rapid development of electronic devices based on organic semiconductors, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells (OPVs), and organic field effect transistors (OFETs), among others, have excelled. Their uses extend to the fabrication of intelligent screens for televisions and portable devices, due to their flexibility and versatility. Lately, great efforts have been reported in the literature to use them in the biomedical field, such as in photodynamic therapy. In tandem, there has been considerable interest in the design of advanced materials originating from natural sources. Bacterial nanocellulose (BNC) is a natural polymer synthesized by many microorganisms, notably by non-pathogenic strains of Komagataeibacter (K. xylinus, K. hansenii, and K. rhaeticus). BNC shows distinct physical and mechanical properties, including its insolubility, rapid biodegradability, tensile strength, elasticity, durability, and nontoxic and nonallergenic features, which make BNC ideal for many areas, including active and intelligent food packaging, sensors, water remediation, drug delivery, wound healing, and as conformable/flexible substrates for application in organic electronics. Here, we review BNC production methods, properties, and applications, focusing on electronic devices, especially OLEDs and flexible OLEDs (FOLEDs). Furthermore, we discuss the future progress of BNC-based flexible substrate nanocomposites.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • semiconductor
  • strength
  • elasticity
  • tensile strength
  • durability