Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahato, Biltu

  • Google
  • 1
  • 2
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Separating Curing and Temperature Effects on the Temperature Coefficient of Resistance for a Single-Walled Carbon Nanotube Nanocomposite11citations

Places of action

Chart of shared publication
Abaimov, Sergey G.
1 / 11 shared
Jafarypouria, Milad
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abaimov, Sergey G.
  • Jafarypouria, Milad
OrganizationsLocationPeople

article

Separating Curing and Temperature Effects on the Temperature Coefficient of Resistance for a Single-Walled Carbon Nanotube Nanocomposite

  • Abaimov, Sergey G.
  • Mahato, Biltu
  • Jafarypouria, Milad
Abstract

<jats:p>The temperature coefficient of resistance (TCR) determines the electrical performance of materials in electronics. For a carbon nanotube (CNT) nanocomposite, change of resistivity with temperature depends on changes in CNT intrinsic conductivity, tunnelling thresholds and distances, matrix’ coefficient of thermal expansion, and other factors. In our study, we add one more influencing factor–the degree of cure. Complexities of the curing process cause difficulties to predict, or even measure, the curing state of the polymer matrix while uncertainty in the degree of cure influences TCR measurements leading to biased values. Here we study the influence of the cure state on the TCR of a single-walled CNT/epoxy polymer nanocomposite. For the given degree of cure, TCR measurements are conducted in the temperature range 25–100 °C, followed by the next 24 h of post-curing and a new cycle of measurements, 8 cycles in total. We find that contrary to industry practice to expect a high degree of cure after 3 h at 130 °C, the curing process is far from reaching the steady state of the material and continues at least for the next 72 h at 120 °C, as we observe by changes in the material electrical resistivity. If TCR measurements are conducted in this period, we find them significantly influenced by the post-curing process continuing in parallel, leading in particular to non-monotonic temperature dependence and the appearance of negative values. The unbiased TCR values we observe only when the material reaches the steady state are no longer influenced by the heat input. The dependence becomes steady, monotonically increasing from near zero value at room temperature to 0.001 1/°C at 100 °C.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • Carbon
  • resistivity
  • nanotube
  • thermal expansion
  • curing