People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panaitescu, Denis Mihaela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Effect of Medium-Chain-Length Alkyl Silane Modified Nanocellulose in Poly(3-hydroxybutyrate) Nanocompositescitations
- 2023Complex Effects of Hemp Fibers and Impact Modifiers in Multiphase Polypropylene Systemscitations
- 2022Opposite Roles of Bacterial Cellulose Nanofibers and Foaming Agent in Polyhydroxyalkanoate-Based Materialscitations
- 2022Poly(3-hydroxybutyrate) Nanocomposites with Cellulose Nanocrystalscitations
- 2022Bio-Based Poly(lactic acid)/Poly(butylene sebacate) Blends with Improved Toughnesscitations
- 2021The Effect of SEBS/Halloysite Masterbatch Obtained in Different Extrusion Conditions on the Properties of Hybrid Polypropylene/Glass Fiber Composites for Auto Partscitations
- 2021Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devicescitations
- 2020Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization.citations
- 2020Effect of hemp fiber length on the mechanical and thermal properties of polypropylene/SEBS/hemp fiber compositescitations
- 2020Low molecular weight and polymeric modifiers as toughening agents in poly(3‐hydroxybutyrate) filmscitations
- 2019Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printingcitations
- 2018Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applicationscitations
- 2015Influence of Thermal Treatment on Mechanical and Morphological Characteristics of Polyamide 11/Cellulose Nanofiber Nanocompositescitations
- 2014The effect of polystyrene blocks content and of type of elastomer blocks on the properties of block copolymer/layered silicate nanocompositescitations
- 2014Polypropylene/organoclay/SEBS nanocomposites with toughness-stiffness propertiescitations
Places of action
Organizations | Location | People |
---|
article
Complex Effects of Hemp Fibers and Impact Modifiers in Multiphase Polypropylene Systems
Abstract
<jats:p>Natural fibers-reinforced polymer composites have progressed rapidly due to their undeniable advantages. Most of the commercial polypropylene (PP)-based materials are characterized by either high impact toughness or high stiffness, while the manufacture of PP composites with both good toughness and stiffness is challenging at present. In this work, poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and poly(styrene-b-butadiene-b-styrene) (SBS) copolymers were used in different amounts as modifiers in PP/hemp fibers (HF) composites, with the aim to use them for electrical vehicle parts. The interface in these multiphase systems was controlled by the addition of maleated polypropylene (MAPP). SEBS and SBS showed different effects on the elongation at break of the blends and the corresponding composites due to the HF that stiffened the multiphase systems. Similarly, a different action of MAPP was observed in the composites containing SEBS or SBS: higher Young’s and storage moduli were obtained for the composite containing SBS, while greater elongation at break and impact strength values were recorded for the SEBS-containing system. In addition, a remarkable dispersion in the MAPP-containing composite and two times smaller average particle size were revealed by the SEM analysis for the SEBS particles compared to the SBS ones. The higher affinity of SEBS for PP compared to that for SBS and the different morphological characteristics of the systems containing SEBS and SBS may explain the different effects of these impact modifiers on the mechanical properties of the composites. The composites developed in this work were designed as substitutes for the fully synthetic polymeric materials or metal components used in the manufacturing of automotive parts.</jats:p>