Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Loureiro, Mónica V.

  • Google
  • 2
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Emulsion Stabilization Strategies for Tailored Isocyanate Microcapsules5citations
  • 2018Isophorone Diisocyanate (IPDI) Microencapsulation for Mono-Component Adhesives: Effect of the Active H and NCO Sources26citations

Places of action

Chart of shared publication
Marques, Ana C.
1 / 7 shared
Pinho, Isabel
1 / 2 shared
Mariquito, António
1 / 1 shared
Bordado, João C.
1 / 1 shared
Vale, Mário
1 / 1 shared
Chart of publication period
2023
2018

Co-Authors (by relevance)

  • Marques, Ana C.
  • Pinho, Isabel
  • Mariquito, António
  • Bordado, João C.
  • Vale, Mário
OrganizationsLocationPeople

article

Emulsion Stabilization Strategies for Tailored Isocyanate Microcapsules

  • Marques, Ana C.
  • Pinho, Isabel
  • Mariquito, António
  • Bordado, João C.
  • Vale, Mário
  • Loureiro, Mónica V.
Abstract

<jats:p>We report on the stabilization of an oil-in-water (O/W) emulsion to, combined with interfacial polymerization, produce core–shell polyurea microcapsules (MCs) containing isophorone diisocyanate (IPDI). These will act as crosslinkers for mono-component adhesives. The emulsion stabilization was evaluated using three types of stabilizers, a polysaccharide (gum arabic) emulsifier, a silicone surfactant (Dabco®DC193), a rheology modifier (polyvinyl alcohol), and their combinations. Emulsion sedimentation studies, optical microscopy observation, and scanning electron microscopy enabled us to assess the emulsions stability and droplet size distribution and correlate them to the MCs morphology. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed the MCs composition and enabled us to evaluate the encapsulation yield. All stabilizers, except DC193, led to spherical, loose, and core–shelled MCs. The rheology modifier, which increases the continuous phase viscosity, reduces the emulsion droplets sedimentation, keeping their size constant during the MCs’ synthesis. This allowed us to obtain good quality MCs, with a smaller average diameter, of approximately 40.9 µm mode, a narrower size distribution and 46 wt% of encapsulated IPDI. We show the importance of the emulsion stability to tune the MCs morphology, size, and size distribution, which are critical for improved homogeneity and performance when used, e.g., in natural and synthetic adhesive formulations industry.</jats:p>

Topics
  • morphology
  • phase
  • scanning electron microscopy
  • viscosity
  • thermogravimetry
  • interfacial
  • optical microscopy
  • Fourier transform infrared spectroscopy
  • alcohol
  • surfactant