Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Beh, Chong You

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Complex Impedance and Modulus Analysis on Porous and Non-Porous Scaffold Composites Due to Effect of Hydroxyapatite/Starch Proportion2citations

Places of action

Chart of shared publication
Lee, Kim Yee
1 / 1 shared
Khor, Shing Fhan
1 / 1 shared
Jamir, Mohd Ridzuan Mohd
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lee, Kim Yee
  • Khor, Shing Fhan
  • Jamir, Mohd Ridzuan Mohd
OrganizationsLocationPeople

article

Complex Impedance and Modulus Analysis on Porous and Non-Porous Scaffold Composites Due to Effect of Hydroxyapatite/Starch Proportion

  • Lee, Kim Yee
  • Beh, Chong You
  • Khor, Shing Fhan
  • Jamir, Mohd Ridzuan Mohd
Abstract

<jats:p>This study aims to investigate the electric responses (complex modulus and complex impedance analysis) of hydroxyapatite/starch bone scaffold as a function of hydroxyapatite/starch proportion and the microstructural features. Hence, the non-porous and porous hydroxyapatite/starch composites were fabricated with various hydroxyapatite/starch proportions (70/30, 60/40, 50/50, 40/60, 30/70, 20/80, and 10/90 wt/wt%). Microstructural analysis of the porous hydroxyapatite/starch composites was carried out by using scanning electron microscopy. It shows that the formation of hierarchical porous microstructures with high porosity is more significant at a high starch proportion. The complex modulus and complex impedance analysis were conducted to investigate the electrical conduction mechanism of the hydroxyapatite/starch composites via dielectric spectroscopy within a frequency range from 5 MHz to 12 GHz. The electrical responses of the hydroxyapatite/starch composites are highly dependent on the frequency, material proportion, and microstructures. High starch proportion and highly porous hierarchical microstructures enhance the electrical responses of the hydroxyapatite/starch composite. The material proportion and microstructure features of the hydroxyapatite/starch composites can be indirectly reflected by the simulated electrical parameters of the equivalent electrical circuit models.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • scanning electron microscopy
  • composite
  • porosity
  • complex modulus