Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sanda-Maria, Bucatariu

  • Google
  • 1
  • 7
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease24citations

Places of action

Chart of shared publication
Constantin, Marieta
1 / 2 shared
Fundueanu, Gheorghe
1 / 2 shared
Pelin, Irina Mihaela
1 / 1 shared
Ichim, Daniela Luminita
1 / 2 shared
Doroftei, Florica
1 / 8 shared
Daraba, Oana Maria
1 / 2 shared
Lupei, Mihail
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Constantin, Marieta
  • Fundueanu, Gheorghe
  • Pelin, Irina Mihaela
  • Ichim, Daniela Luminita
  • Doroftei, Florica
  • Daraba, Oana Maria
  • Lupei, Mihail
OrganizationsLocationPeople

article

PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease

  • Constantin, Marieta
  • Fundueanu, Gheorghe
  • Pelin, Irina Mihaela
  • Ichim, Daniela Luminita
  • Doroftei, Florica
  • Daraba, Oana Maria
  • Lupei, Mihail
  • Sanda-Maria, Bucatariu
Abstract

<jats:p>Local delivery of drugs or antimicrobial agents is a suitable approach in the management of periodontitis when the infection is localized deep in the pockets and does not adequately respond to mechanical debridement and/or systemic antibiotic treatment. In this context, the objective of this study was to prepare new biocomposite films with antimicrobial, anti-inflammatory, and good mechanical properties to be applied in periodontal pockets. The composite film is eco-friendly synthesized from poly(vinyl alcohol) (PVA) cross-linked with oxidized chitosan (OxCS). Silver nanoparticles (AgNps) were inserted during film synthesis by adding freshly chitosan-capped AgNps colloidal solution to the polymer mixture; the addition of AgNps up to 1.44 wt.% improves the physico-chemical properties of the film. The characterization of the films was performed by FT-IR, atomic mass spectrometry, X-ray spectroscopy, and SEM. The films displayed a high swelling ratio (162%), suitable strength (1.46 MPa), and excellent mucoadhesive properties (0.6 N). Then, ibuprofen (IBF) was incorporated within the best film formulation, and the IBF-loaded PVA/OxCS-Ag films could deliver the drug in a sustained manner up to 72 h. The biocomposite films have good antimicrobial properties against representative pathogens for oral cavities. Moreover, the films are biocompatible, as demonstrated by in vitro tests on HDFa cell lines.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • silver
  • scanning electron microscopy
  • thin film
  • strength
  • composite
  • mass spectrometry
  • alcohol
  • spectrometry
  • X-ray spectroscopy