Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aberoumand, Mohammad

  • Google
  • 11
  • 13
  • 553

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 20244D printing and annealing of PETG composites reinforced with short carbon fibers34citations
  • 2024Influence of Programming and Recovery Parameters on Compressive Behaviors of 4D‐Printed Biocompatible Polyvinyl Chloride or Vinyl–Poly(ε‐Caprolactone) Blends3citations
  • 2024Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D-printed ABS-TPU blends by FDM17citations
  • 20244D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performance76citations
  • 20234D Printing‐Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances72citations
  • 2023Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro‐ and Micro‐Structural Properties77citations
  • 2023Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodology93citations
  • 20234D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performance64citations
  • 2022A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures69citations
  • 2021Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Parts20citations
  • 20214D Printing by Fused Deposition Modeling (FDM)28citations

Places of action

Chart of shared publication
Rahmatabadi, Davood
7 / 11 shared
Bodaghi, Mahdi
9 / 46 shared
Bashi, Mahshid Fallah Min
1 / 1 shared
Soleyman, Elyas
9 / 9 shared
Abrinia, Karen
9 / 11 shared
Ghasemi, Ismaeil
9 / 14 shared
Soltanmohammadi, Kianoosh
9 / 9 shared
Baniassadi, Majid
7 / 10 shared
Baghani, Mostafa
5 / 6 shared
Pahlavani, Mostafa
1 / 1 shared
Zolfagharian, Ali
1 / 13 shared
Moradi, Mahmoud
2 / 83 shared
Aminzadeh, Ahmad
2 / 5 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Rahmatabadi, Davood
  • Bodaghi, Mahdi
  • Bashi, Mahshid Fallah Min
  • Soleyman, Elyas
  • Abrinia, Karen
  • Ghasemi, Ismaeil
  • Soltanmohammadi, Kianoosh
  • Baniassadi, Majid
  • Baghani, Mostafa
  • Pahlavani, Mostafa
  • Zolfagharian, Ali
  • Moradi, Mahmoud
  • Aminzadeh, Ahmad
OrganizationsLocationPeople

article

A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures

  • Zolfagharian, Ali
  • Bodaghi, Mahdi
  • Soleyman, Elyas
  • Abrinia, Karen
  • Ghasemi, Ismaeil
  • Aberoumand, Mohammad
  • Baniassadi, Majid
  • Soltanmohammadi, Kianoosh
Abstract

<jats:p>In this study, a new strategy and design for achieving a shape memory effect (SME) and 4D printed two-layer composite structures is unveiled, thanks to fused deposition modeling (FDM) biomaterial printing of commercial filaments, which do not have an SME. We used ABS and PCL as two well-known thermoplastics, and TPU as elastomer filaments that were printed in a two-layer structure. The thermoplastic layer plays the role of constraint for the elastomeric layer. A rubber-to-glass transition of the thermoplastic layer acts as a switching phenomenon that provides the capability of stabilizing the temporary shape, as well as storing the deformation stress for the subsequent recovery of the permanent shape by phase changing the thermoplastic layer in the opposite direction. The results show that ABS–TPU had fixity and recovery ratios above 90%. The PCL–TPU composite structure also demonstrated complete recovery, but its fixity was 77.42%. The difference in the SME of the two composite structures is related to the transition for each thermoplastic and programming temperature. Additionally, in the early cycles, the shape-memory performance decreased, and in the fourth and fifth cycles, it almost stabilized. The scanning electron microscopy (SEM) photographs illustrated superior interfacial bonding and part integrity in the case of multi-material 3D printing.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • glass
  • glass
  • composite
  • interfacial
  • thermoplastic
  • rubber
  • elastomer