People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grgur, Branimir
University of Belgrade
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024RSE SEE 9 - Book of Abstracts
- 2024Revealing the Surface and In-Depth Operational Performances of Oxygen-Evolving Anode Coatings: A Guideline for the Synthesis of Inert Durable Anodes in Metal Electrowinning from Acid Solutions
- 2024Fine-Tuning Bimetallic Nanostructures for Enhanced Hydrogen Evolution Reaction
- 2023Black pine (Pinus nigra) essential oil as a green corosion inhibitor for carbon steelcitations
- 2022Development of a New AuCuZnGe Alloy and Determination of Its Corrosion Propertiescitations
- 2022Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behaviorcitations
- 2002Fundamental Aspects of Electrometallurgy
Places of action
Organizations | Location | People |
---|
article
Electrochemical and Electrical Performances of High Energy Storage Polyaniline Electrode with Supercapattery Behavior
Abstract
Polyaniline (PANI), due to its highly reversible electrochemistry with superior energy storage and delivery characteristics, is considered as an electrode material in batteries, capacitors, and hybrid systems. We used a facile electrochemical synthesis for the formation of the PANI electrode using galvanostatic polymerization of aniline on the graphite electrode at the current density of 2.0 mA cm−2 from the aqueous electrolyte containing 0.25 mol dm−3 aniline and 1.0 mol dm−3 H2SO4. Electrochemical and electrical characterization suggested excellent energy storage features of the PANI electrode in a three-electrode system with specific energy up to 53 Wh kg−1 and specific power up to 7600 W kg−1. After 2000 successive charge/discharge cycles at 9.5 Ag−1, the PANI electrode retained 95% of the initial capacity, with practically unaltered Coulombic efficiency of nearly 98%, providing a good base for future studies and practical applications.