Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pozovnyi, Oleksandr

  • Google
  • 2
  • 9
  • 11

Sumy State University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Computer Simulation of Composite Materials Behavior under Pressing5citations
  • 2021Determination of material parameters of rubber and composites for computational modeling based on experiment data6citations

Places of action

Chart of shared publication
Artyukhov, Artem
1 / 1 shared
Krmela, Jan
1 / 2 shared
Brejcha, Jiří
1 / 1 shared
Berladir, Kristina
1 / 1 shared
Zhyhylii, Dmytro
1 / 1 shared
Krmelová, Vladimíra
1 / 1 shared
Krmela, J.
1 / 3 shared
Krmelová, V.
1 / 2 shared
Artyukhov, A.
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Artyukhov, Artem
  • Krmela, Jan
  • Brejcha, Jiří
  • Berladir, Kristina
  • Zhyhylii, Dmytro
  • Krmelová, Vladimíra
  • Krmela, J.
  • Krmelová, V.
  • Artyukhov, A.
OrganizationsLocationPeople

article

Computer Simulation of Composite Materials Behavior under Pressing

  • Pozovnyi, Oleksandr
  • Artyukhov, Artem
  • Krmela, Jan
  • Brejcha, Jiří
  • Berladir, Kristina
  • Zhyhylii, Dmytro
  • Krmelová, Vladimíra
Abstract

<jats:p>Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and properties of the composite. In this work, a computer simulation was carried out to identify the main dependencies of the behavior of composite materials in the process of the main technological operations of their production: pressing and subsequent sintering. A polymer matrix randomly reinforced with two types of fillers: spherical and short cylindrical inclusions, was used to construct the finite element models of the structure of composites. The ANSYS Workbench package was used as a calculation simulation platform. The true stress–strain curves for tension, Poisson’s ratios, and ultimate stresses for composite materials were obtained using the finite element method based on the micromechanical approach at the first stage. These values were calculated based on the stretching diagrams of the matrix and fillers and the condition of the ideality of their joint operation. At the second stage, the processes of mechanical pressing of composite materials were modelled based on their elastic–plastic characteristics from the first stage. The result is an assessment of the accumulation of residual strains at the stage before sintering. The degree of increase in total strain capability of composite materials after sintering was shown.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • inclusion
  • simulation
  • composite
  • sintering