Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gonzalez, Francisco Javier Delgado

  • Google
  • 2
  • 8
  • 27

Universidad de Cádiz

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Stereolithography of Semiconductor Silver and Acrylic-Based Nanocomposites10citations
  • 2022Synthesis of Silver Nanocomposites for Stereolithography: In Situ Formation of Nanoparticles17citations

Places of action

Chart of shared publication
Benito, Javier
1 / 2 shared
Romero-Ocaña, Ismael
1 / 3 shared
Herrera, Miriam
1 / 3 shared
Hernández-Saz, J.
1 / 1 shared
De La Mata, María
1 / 5 shared
Molina, Sergio I.
1 / 12 shared
Delgado, Francisco J.
1 / 1 shared
Valencia, Luisa M.
1 / 4 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Benito, Javier
  • Romero-Ocaña, Ismael
  • Herrera, Miriam
  • Hernández-Saz, J.
  • De La Mata, María
  • Molina, Sergio I.
  • Delgado, Francisco J.
  • Valencia, Luisa M.
OrganizationsLocationPeople

article

Stereolithography of Semiconductor Silver and Acrylic-Based Nanocomposites

  • Benito, Javier
  • Romero-Ocaña, Ismael
  • Herrera, Miriam
  • Gonzalez, Francisco Javier Delgado
  • Hernández-Saz, J.
  • De La Mata, María
  • Molina, Sergio I.
  • Delgado, Francisco J.
  • Valencia, Luisa M.
Abstract

<jats:p>Polymer nanocomposites (PNCs) attract the attention of researchers and industry because of their potential properties in widespread fields. Specifically, electrically conductive and semiconductor PNCs are gaining interest as promising materials for biomedical, optoelectronic and sensing applications, among others. Here, metallic nanoparticles (NPs) are extensively used as nanoadditives to increase the electrical conductivity of mere acrylic resin. As the in situ formation of metallic NPs within the acrylic matrix is hindered by the solubility of the NP precursors, we propose a method to increase the density of Ag NPs by using different intermediate solvents, allowing preparation of Ag/acrylic resin nanocomposites with improved electrical behaviour. We fabricated 3D structures using stereolithography (SLA) by dissolving different quantities of metal precursor (AgClO4) in methanol and in N,N-dimethylformamide (DMF) and adding these solutions to the acrylic resin. The high density of Ag NPs obtained notably increases the electrical conductivity of the nanocomposites, reaching the semiconductor regime. We analysed the effect of the auxiliary solvents during the printing process and the implications on the mechanical properties and the degree of cure of the fabricated nanocomposites. The good quality of the materials prepared by this method turn these nanocomposites into promising candidates for electronic applications.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • density
  • impedance spectroscopy
  • polymer
  • silver
  • semiconductor
  • resin
  • electrical conductivity
  • dissolving