Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Janošević, Predrag

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Types1citations

Places of action

Chart of shared publication
Najman, Stevo
1 / 6 shared
Stojanović, Sanja
1 / 4 shared
Stojanović, Ivana
1 / 2 shared
Janošević, Mirjana
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Najman, Stevo
  • Stojanović, Sanja
  • Stojanović, Ivana
  • Janošević, Mirjana
OrganizationsLocationPeople

article

Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Types

  • Najman, Stevo
  • Janošević, Predrag
  • Stojanović, Sanja
  • Stojanović, Ivana
  • Janošević, Mirjana
Abstract

<jats:p>In the present study, the in vitro biocompatibility and cell response to two commonly used orthodontic bonding materials of different types, one self-curing and one light-curing, were examined and compared in indirect and direct cell culture systems. The study was conducted on fibroblasts and macrophages as in vitro models to study the biocompatibility of dental materials. Differences were found between the light- and self-curing material in cytotoxicity and effects on fibroblasts’ proliferation in indirect cell culture systems as well as in macrophages response in vitro in both direct and indirect cell culture systems. Based on the obtained results, we can conclude that the self-curing material is generally more cytotoxic for fibroblasts compared to the light-curing, while macrophages’ response to these materials was dependent on the macrophages’ state and differed between the examined materials. This indicates that more attention should be paid when choosing and applying these materials in practice due to their toxicity to cells. Prior to their use, all aspects should be considered regarding the patient’s conditions, associated problems, microenvironment in the oral cavity, etc. Further studies on in vivo models should be conducted to fully understand the potential long-term effects of the use of mentioned materials in orthodontics.</jats:p>

Topics
  • impedance spectroscopy
  • toxicity
  • biocompatibility
  • curing