People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Najman, Stevo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Typescitations
- 2022Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided Bone Regeneration (GBR)
- 2021Biocompatibility and Immune Response of a Newly Developed Volume-Stable Magnesium-Based Barrier Membrane in Combination with a PVD Coating for Guided Bone Regeneration (GBR)
- 2018Scanning electron microscopy analysis of changes of hydroxiapatite/poly-l-lactide with different molecular weight of PLLA after intraperitoneal implantation
- 2013Scanning electron microscopy study of changes in nanoparticles surface under in vitro simulated physiological conditions
- 2008Nanomaterial N-CP/DLPLG as potent1onal tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation modelcitations
Places of action
Organizations | Location | People |
---|
article
Comparative In Vitro Biocompatibility Study of the Two Orthodontic Bonding Materials of Different Types
Abstract
<jats:p>In the present study, the in vitro biocompatibility and cell response to two commonly used orthodontic bonding materials of different types, one self-curing and one light-curing, were examined and compared in indirect and direct cell culture systems. The study was conducted on fibroblasts and macrophages as in vitro models to study the biocompatibility of dental materials. Differences were found between the light- and self-curing material in cytotoxicity and effects on fibroblasts’ proliferation in indirect cell culture systems as well as in macrophages response in vitro in both direct and indirect cell culture systems. Based on the obtained results, we can conclude that the self-curing material is generally more cytotoxic for fibroblasts compared to the light-curing, while macrophages’ response to these materials was dependent on the macrophages’ state and differed between the examined materials. This indicates that more attention should be paid when choosing and applying these materials in practice due to their toxicity to cells. Prior to their use, all aspects should be considered regarding the patient’s conditions, associated problems, microenvironment in the oral cavity, etc. Further studies on in vivo models should be conducted to fully understand the potential long-term effects of the use of mentioned materials in orthodontics.</jats:p>