Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kozakevych, Roman

  • Google
  • 2
  • 11
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022In Situ Ring-Opening Polymerization of L-lactide on the Surface of Pristine and Aminated Silica: Synthesis and Metal Ions Extraction2citations
  • 2016Modified silicas with different structure of grafted methylphenylsiloxane layercitations

Places of action

Chart of shared publication
Tertykh, Valentin A.
1 / 2 shared
Polishchuk, Liliia
1 / 1 shared
Kusyak, Andrii P.
1 / 2 shared
Tkachenko, Oleg
1 / 3 shared
Budnyak, Tetyana
1 / 3 shared
Strømme, Maria
1 / 9 shared
Deryło-Marczewska, Anna
1 / 3 shared
Bolbukh, Yuliia
1 / 2 shared
Tertykh, Valentin
1 / 3 shared
Terpiłowski, Konrad
1 / 10 shared
Sternik, Dariusz
1 / 8 shared
Chart of publication period
2022
2016

Co-Authors (by relevance)

  • Tertykh, Valentin A.
  • Polishchuk, Liliia
  • Kusyak, Andrii P.
  • Tkachenko, Oleg
  • Budnyak, Tetyana
  • Strømme, Maria
  • Deryło-Marczewska, Anna
  • Bolbukh, Yuliia
  • Tertykh, Valentin
  • Terpiłowski, Konrad
  • Sternik, Dariusz
OrganizationsLocationPeople

article

In Situ Ring-Opening Polymerization of L-lactide on the Surface of Pristine and Aminated Silica: Synthesis and Metal Ions Extraction

  • Tertykh, Valentin A.
  • Polishchuk, Liliia
  • Kusyak, Andrii P.
  • Tkachenko, Oleg
  • Kozakevych, Roman
  • Budnyak, Tetyana
  • Strømme, Maria
Abstract

<jats:p>The development of functional materials from food waste sources and minerals is currently of high importance. In the present work, polylactic acid (PLA)/silica composites were prepared by in situ ring-opening polymerizations of L-lactide onto the surface of pristine (Silochrom) and amine-functionalized (Silochrom-NH2) silica. The characteristics of the ring-opening polymerization onto the surface of modified and unmodified silica were identified and discussed. Fourier transform infrared spectroscopy was used to confirm the polymerization of lactide onto the silica surface, and thermogravimetric analysis determined that PLA constituted 5.9% and 7.5% of the composite mass for Silochrom/PLA and Silochrom-NH2/PLA, respectively. The sorption properties of the composites with respect to Pb(II), Co(II), and Cu(II) ions were investigated, and the effect of contact time, initial metal ion concentration, and initial pH were evaluated. Silochrom-NH2/PLA composites were found to have a higher adsorption capacity than Silochrom/PLA for all chosen ions, with the highest adsorption value occurring for Pb2+ at 1.5 mmol/g (90% removal efficiency). The composites showed the highest performance in the neutral or near-neutral pH (created by distilled water or buffer pH 6.86) during the first 15 min of phase contact. The equilibrium characteristics of adsorption were found to follow the Langmuir isotherm model rather than the Freundlich and Temkin models. Perspective applications for these PLA/silicas include remediation of industrial wastewater or leaching solutions from spent lead-acid and Li-ion batteries.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • phase
  • extraction
  • composite
  • thermogravimetry
  • leaching
  • amine
  • Fourier transform infrared spectroscopy