People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Buican, George Razvan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Design and Testing of Brushless DC Motor Components of A6 Steel Additively Manufactured by Selective Laser Sinteringcitations
- 2022Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Propertiescitations
- 2022Effect of the infill patterns on the mechanical properties of the carbon fiber 3D printed partscitations
- 2022Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Processcitations
- 2022Compression and Bending Properties of Short Carbon Fiber Reinforced Polymers Sandwich Structures Produced via Fused Filament Fabrication Processcitations
- 2021Fabrication and Characterization of Fiber-Reinforced Composite Sandwich Structures Obtained by Fused Filament Fabrication Processcitations
- 2021The heat treatment influence on microstructure and mechanical properties of TiAl6V4 parts manufactured by SLM
- 2019Research Regarding Manufacturing of 316L Stainless Steel Parts Using Selective Laser Melting Process (SLM)
Places of action
Organizations | Location | People |
---|
article
Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties
Abstract
<jats:p>Fused Filament Fabrication (FFF) is one of the frequently used material extrusion (MEX) additive manufacturing processes due to its ability to manufacture functional components with complex geometry, but their properties depend on the process parameters. This paper focuses on studying the effects of process parameters, namely infill density (25%, 50%, 75%, and 100%), on the mechanical and thermal response of the samples made of poly(lactic acid) (PLA) reinforced with short glass fibers (GF) produced using FFF process. To perform a comprehensive analysis, tensile, flexural, compression, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) tests were used. The paper also aims to manufacture by FFF process of composite structures of the fuselage section type, as structural elements of an unmanned aerial vehicle (UAV), and their testing to compression loads. The results showed that the tensile, flexural and compression strength of the additive manufactured (AMed) samples increased with the increase of infill density and therefore, the samples with 100% infill density provides the highest mechanical characteristics. The AMed samples with 50% and 75% infill density exhibited a higher toughness than samples with 100% infill. DSC analyses revealed that the glass transition (Tg), and melting (Tm) temperature increases slightly as the infill density increases. Thermogravimetric analyses (TGA) show that PLA-GF filament loses its thermal stability at a temperature of about 311 °C and the increase in fill density leads to a slight increase in thermal stability and the complete degradation temperature of the AMed material. The compression tests of the fuselage sections manufactured by FFF made of PLA-GF composite showed that their stiffening with stringers oriented at an angle of ±45° ensures a higher compression strength than the stiffening with longitudinal stringers.</jats:p>