Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karmel, Sarah

  • Google
  • 2
  • 4
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Hot Lithography Vat Photopolymerisation 3D Printing: Vat Temperature vs. Mixture Design12citations
  • 2022Large Scale Vat-Photopolymerization of Investment Casting Master Patterns: The Total Solution3citations

Places of action

Chart of shared publication
Sameni, Farzaneh
2 / 2 shared
Engstrøm, Daniel
2 / 3 shared
Zarezadeh, Hanifeh
1 / 1 shared
Sabet, Ehsan
2 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sameni, Farzaneh
  • Engstrøm, Daniel
  • Zarezadeh, Hanifeh
  • Sabet, Ehsan
OrganizationsLocationPeople

article

Large Scale Vat-Photopolymerization of Investment Casting Master Patterns: The Total Solution

  • Sameni, Farzaneh
  • Engstrøm, Daniel
  • Karmel, Sarah
  • Sabet, Ehsan
Abstract

<jats:p>The material properties and processing of investment casting patterns manufactured using conventional wax injection Molding and those manufactured by vat photopolymerization can be substantially different in terms of thermal expansion and mechanical properties, which can generate problems with dimensional accuracy and stability before and during ceramic shelling and shell failures during the burn-out of the 3D printed casting patterns. In this paper and for the first time, the monofunctional Acryloyl morpholine monomer was used for 3D printing of casting patterns, due to its thermoplastic-like behavior, e.g., softening by heat. However, the hydrophilic behavior of this polymer led to an incorporation of up to 60 wt% of Hexanediol diacrylate, to control the water absorption of the network, which to some extent, compromised the softening feature of Acryloyl morpholine. Addition of a powdered wax filler resulted in a delayed thermal decomposition of the polymer network, however, it helped to reduce the thermal expansion of the parts. The dimensional accuracy and stability of the wax-filled formulation indicated an excellent dimensional tolerance of less than ±130 µm. Finally, the 3D printed patterns successfully went through a burn out process with no damages to the ceramic shell.</jats:p>

Topics
  • laser emission spectroscopy
  • thermal expansion
  • ceramic
  • injection molding
  • thermoplastic
  • thermal decomposition
  • investment casting
  • vat photopolymerization