Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abdel-Gawad, Ahmed M.

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding12citations

Places of action

Chart of shared publication
Ramadan, Adham R.
1 / 1 shared
Esawi, Amal M. K.
1 / 2 shared
Flores, Araceli
1 / 10 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ramadan, Adham R.
  • Esawi, Amal M. K.
  • Flores, Araceli
OrganizationsLocationPeople

article

Fabrication of Nylon 6-Montmorillonite Clay Nanocomposites with Enhanced Structural and Mechanical Properties by Solution Compounding

  • Ramadan, Adham R.
  • Abdel-Gawad, Ahmed M.
  • Esawi, Amal M. K.
  • Flores, Araceli
Abstract

<jats:p>Melt compounding has been favored by researchers for producing nylon 6/montmorillonite clay nanocomposites. It was reported that high compatibility between the clay and the nylon6 matrix is essential for producing exfoliated and well-dispersed clay particles within the nylon6 matrix. Though solution compounding represents an alternative preparation method, reported research for its use for the preparation of nylon 6/montmorillonite clay is limited. In the present work, solution compounding was used to prepare nylon6/montmorillonite clays and was found to produce exfoliated nylon 6/montmorillonite nanocomposites, for both organically modified clays with known compatibility with nylon 6 (Cloisite 30B) and clays with low/no compatibility with nylon 6 (Cloisite 15A and Na+-MMT), though to a lower extent. Additionally, solution compounding was found to produce the more stable α crystal structure for both blank nylon6 and nylon6/montmorillonite clays. The process was found to enhance the matrix crystallinity of blank nylon6 samples from 36 to 58%. The resulting composites were found to possess comparable mechanical properties to similar composites produced by melt blending.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • melt
  • crystallinity