Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Žiganova, Madara

  • Google
  • 1
  • 7
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Characterisation of Nanoclay and Spelt Husk Microfiller-Modified Polypropylene Composites5citations

Places of action

Chart of shared publication
Danilovas, Paulius P.
1 / 1 shared
Ivanova, Tatjana
1 / 1 shared
Bochkov, Ivan
1 / 4 shared
Zicāns, Jānis
1 / 1 shared
Błędzki, Andrzej K.
1 / 1 shared
Kalniņš, Mārtiņš
1 / 1 shared
Meri, Remo Merijs
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Danilovas, Paulius P.
  • Ivanova, Tatjana
  • Bochkov, Ivan
  • Zicāns, Jānis
  • Błędzki, Andrzej K.
  • Kalniņš, Mārtiņš
  • Meri, Remo Merijs
OrganizationsLocationPeople

article

Characterisation of Nanoclay and Spelt Husk Microfiller-Modified Polypropylene Composites

  • Danilovas, Paulius P.
  • Ivanova, Tatjana
  • Bochkov, Ivan
  • Zicāns, Jānis
  • Błędzki, Andrzej K.
  • Kalniņš, Mārtiņš
  • Žiganova, Madara
  • Meri, Remo Merijs
Abstract

<jats:p>Current research is devoted to the investigation of spelt husk (SH) and nanoclay-modified compatibilised polypropylene (PP) binary and ternary composites for injection-moulding applications. PP composites were obtained using twin-screw extrusion. The content of mechanically milled SH microfiller with aspect ratio within 2 and 6 was fixed at 40 wt.%, whereas the amount of nanoclay functional filler in the polypropylene matrix was changed in the range from 0.5 to 5 wt.%. Nanoclay filler was introduced in the polypropylene matrix either in the form of nanoclay powder (C) or as a masterbatch (M). Regular distribution of the clay nanofiller within the polymer matrix has been observed, disregarding its form and concentration. The effects of the individual or combined addition of SH microreinforcement and nanoclay fillers on the rheological, mechanical, calorimetric, and thermal properties of the developed PP composites were investigated. It is revealed that the addition of the nanoclay fillers insignificantly influences the viscosity of both PP nanocomposites and hybrid composites with SH. Additionally, for PP nanocomposites, remarkable increases in tensile and flexural modules and strength are observed by maintaining considerable ultimate deformations, mainly in the case of M-containing systems. Concomitantly, because of the addition of the nanoclay filler, the improvement in thermal stability of PP nanocomposites and PP hybrid composites with SH is observed. As a result of SH addition, considerable increases in tensile and flexural modules are also observed. Results of the research demonstrate the potential of the use of natural materials (agricultural residues and clay minerals) for the development of PP composites with increased stiffness and thermal properties.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • mineral
  • polymer
  • extrusion
  • strength
  • viscosity