People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Attin, Thomas
University of Zurich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glasscitations
- 2023Water-Induced Changes in Experimental Resin Composites Functionalized with Conventional (45S5) and Customized Bioactive Glass.citations
- 2022Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Compositescitations
- 2022Impact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin composites ; ENEngelskEnglishImpact of copper-doped mesoporous bioactive glass nano-spheres on the polymerisation kinetics and shrinkage stress of dental resin compositescitations
- 2022Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study.citations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glasscitations
- 2022Long-Term Assessment of Contemporary Ion-Releasing Restorative Dental Materials.citations
- 2022Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass.citations
- 2022Marginal integrity of classical and bulk-fill composite restorations in permanent and primary molars.citations
- 2021Change in Color and Gloss Parameters of Stained Monolithic Resin-Ceramic CAD/CAM Materials After Simulated Aging: An In Vitro Study.citations
- 2021Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses
- 2021Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers
- 2021Experimental Bioactive Glass-Containing Composites and Commercial Restorative Materials: Anti-Demineralizing Protection of Dentin.citations
- 2021Effect of Varying Working Distances between Sandblasting Device and Composite Substrate Surface on the Repair Bond Strength.citations
- 2021Anti-demineralizing protective effects on enamel identified in experimental and commercial restorative materials with functional fillers.citations
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glasscitations
- 2020Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass.citations
- 2020The effect of rapid high-intensity light-curing on micromechanical properties of bulk-fill and conventional resin composites.citations
- 2020Impact of Different Etching Strategies on Margin Integrity of Conservative Composite Restorations in Demineralized Enamel.citations
- 2020Effect of Over-Etching and Prolonged Application Time of a Universal Adhesive on Dentin Bond Strength.citations
- 2020Effect of Over-Etching and Prolonged Application Time of a Universal Adhesive on Dentin Bond Strengthcitations
- 2020Polymerization and shrinkage stress formation of experimental resin composites doped with nano- vs. micron-sized bioactive glasses.citations
- 2020Repolishing in situ eroded CAD/CAM restorative materials and human enamel.citations
- 2015Repairability of CAD/CAM high-density PMMA- and composite-based polymers
- 2003Effect of mineral supplements to citric acid on enamel erosion.citations
Places of action
Organizations | Location | People |
---|
article
Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass.
Abstract
This study evaluated the flexural properties of an experimental composite series functionalized with 5-40 wt% of a low-Na F-containing bioactive glass (F-series) and compared it to another experimental composite series containing the same amounts of the conventional bioactive glass 45S5 (C-series). Flexural strength and modulus were evaluated using a three-point bending test. Degree of conversion was measured using Fourier-transform infrared spectroscopy. Weibull analysis was performed to evaluate material reliability. The control material with 0 wt% of bioactive glass demonstrated flexural strength values of 105.1-126.8 MPa). In the C-series, flexural strength ranged between 17.1 and 121.5 MPa and was considerably more diminished by the increasing amounts of bioactive glass than flexural strength in the F-series (83.8-130.2 MPa). Analogously, flexural modulus in the C-series (0.56-6.66 GPa) was more reduced by the increase in bioactive glass amount than in the F-series (5.24-7.56 GPa). The ISO-recommended "minimum acceptable" flexural strength for restorative resin composites of 80 MPa was achieved for all materials in the F-series, while in the C-series, the materials with higher bioactive glass amounts (20 and 40 wt%) failed to meet the requirement of 80 MPa. The degree of conversion in the F-series was statistically similar or higher compared to that of the control composite with no bioactive glass, while the C-series showed a declining degree of conversion with increasing bioactive glass amounts. In summary, the negative effect of the addition of bioactive glass on mechanical properties was notably less pronounced for the customized bioactive glass than for the bioactive glass 45S5; additionally, mechanical properties of the composites functionalized with the customized bioactive glass were significantly less diminished by artificial aging. Hence, the customized bioactive glass investigated in the present study represents a promising candidate for functionalizing ion-releasing resin composites.