People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trhlikova, Olga
Czech Academy of Sciences
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development
Abstract
<jats:p>In this study, the synthesis of a Michael donor compound from cellulose production by-products—tall oil fatty acids—was developed. The developed Michael donor compounds can be further used to obtain polymeric materials after nucleophilic polymerization through the Michael reaction. It can be a promising alternative method for conventional polyurethane materials, and the Michael addition polymerization reaction takes place under milder conditions than non-isocyanate polyurethane production technology, which requires high pressure, high temperature and a long reaction time. Different polyols, the precursors for Michael donor components, were synthesized from epoxidized tall oil fatty acids by an oxirane ring-opening and esterification reaction with different alcohols (trimethylolpropane and 1,4-butanediol). The addition of functional groups necessary for the Michael reaction was carried out by a transesterification reaction of polyol hydroxyl groups with tert-butyl acetoacetate ester. The following properties of the developed polyols and their acetoacetates were analyzed: hydroxyl value, acid value, moisture content and viscosity. The chemical structure was analyzed using Fourier transform infrared spectroscopy, gel permeation chromatography, size-exclusion chromatography and nuclear magnetic resonance. Matrix-assisted laser desorption/ionization analysis was used for structure identification for this type of acetoacetate for the first time.</jats:p>