People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mukherjee, Adrivit
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024Structure-Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexationcitations
- 2024Structure–Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexationcitations
- 2023Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Depositioncitations
- 2023Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Depositioncitations
- 2023Oxidative chemical vapor deposition of polypyrrole onto carbon fabric for flexible supercapacitive electrode materialcitations
- 2022Initiated Chemical Vapor Deposition (iCVD) of Bio-Based Poly(tulipalin A) Coatingscitations
- 2022Initiated Chemical Vapor Deposition (iCVD) of Bio-Based Poly(tulipalin A) Coatings:Structure and Material Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Initiated Chemical Vapor Deposition (iCVD) of Bio-Based Poly(tulipalin A) Coatings
Abstract
<p>A solvent-free route of initiated chemical vapor deposition (iCVD) was used to synthesize a bio-renewable poly(α-Methylene-γ-butyrolactone) (PMBL) polymer. α-MBL, also known as tulipalin A, is a bio-based monomer that can be a sustainable alternative to produce polymer coatings with interesting material properties. The produced polymers were deposited as thin films on three different types of substrates—polycarbonate (PC) sheets, microscopic glass, and silicon wafers—and characterized via an array of characterization techniques, including Fourier-transform infrared (FTIR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), ultraviolet visible spectroscopy (UV–vis), differential scanning calorimetry (DSC), size-exclusion chromatography (SEC), and thermogravimetric analysis (TGA). Optically transparent thin films and coatings of PMBL were found to have high thermal stability up to 310 °C. The resulting PMBL films also displayed good optical characteristics, and a high glass transition temperature (T<sub>g</sub>~164 °C), higher than the T<sub>g</sub> of its structurally resembling fossil-based linear analogue-poly(methyl methacrylate). The effect of monomer partial pressure to monomer saturation vapor pressure (P<sub>m</sub>/P<sub>sat</sub>) on the deposition rate was investigated in this study. Both the deposition rate and molar masses increased linearly with Pm/Psat following the normal iCVD mechanism and kinetics that have been reported in literature.</p>