People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ueki, Marcelo Massayoshi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2022Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressingcitations
- 2022Effect of sequence of melt mixing on the properties and morphology of blends of polypropylene, styrene–ethylene–butylene–styrene copolymer grafted with maleic anhydride, and organophilic montmorillonite claycitations
Places of action
Organizations | Location | People |
---|
article
Development and Characterization of LLDPE Blends with Different UHMWPE Concentrations Obtained by Hot Pressing
Abstract
<jats:p>To modify its characteristics, expand its applicability, and, in some cases, its processability, new blends using ultra-high-molecular-weight polyethylene (UHMWPE) have been developed. In this study, three different formulations of linear low-density polyethylene (LLDPE) and UHMWPE blends were prepared with 15, 30, and 45% (% w/w) UHMWPE in the LLDPE matrix. All mixtures were prepared by hot pressing and were immersed in water for one hour afterwards at a controlled temperature of 90 °C to relieve the internal stresses that developed during the forming process. The thermal characterization showed that the blends showed endothermic peaks with different melting temperatures, which may be the result of co-crystallization without mixing between the polymers during the forming process. The mechanical characteristics presented are typical of a ductile material, but with the increase in the percentage of UHMWPE, there was a decrease in the ductility of the blends, as the elongation at rupture of the blends was higher than that of the pure components. The morphologies observed by SEM indicate that there were two phases in the blends. This is the result of the system’s immiscibility due to the mode of preparation of the blends, wherein the two polymers may not have mixed intimately, confirming the results found with the thermal analyses.</jats:p>