Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Horvat, Anamarija

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Intrinsically Stretchable Poly(3,4-ethylenedioxythiophene) Conducting Polymer Film for Flexible Electronics3citations

Places of action

Chart of shared publication
Katančić, Zvonimir
1 / 12 shared
Brkić, Lana
1 / 1 shared
Žagar, Patricia
1 / 2 shared
Božičević, Marin
1 / 2 shared
Fiket, Lucija
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Katančić, Zvonimir
  • Brkić, Lana
  • Žagar, Patricia
  • Božičević, Marin
  • Fiket, Lucija
OrganizationsLocationPeople

article

Intrinsically Stretchable Poly(3,4-ethylenedioxythiophene) Conducting Polymer Film for Flexible Electronics

  • Katančić, Zvonimir
  • Brkić, Lana
  • Žagar, Patricia
  • Božičević, Marin
  • Horvat, Anamarija
  • Fiket, Lucija
Abstract

<jats:p>The aim of this study was to synthesize an intrinsically stretchable conductive polymer (CP) by atom transfer radical polymerization (ATRP). For this purpose, poly(3,4-ethyilenedioxythiophene) (PEDOT) was synthesized as a backbone, while poly(acrylate-urethane) (PAU) was grafted onto the PEDOT backbone to form graft polymers PEDOT-g-PAU. Different concentrations of acrylate-urethane (AU) were used to synthesize PAU side chains of different lengths. The successful synthesis of the obtained intermediates and products (PEDOT-g-PAU) was confirmed by infrared spectroscopy and nuclear magnetic resonance. Thermal properties were evaluated by differential scanning calorimetry and thermogravimetric analysis, while conductivity was determined by four-point probe measurement. A simple tensile test was performed to characterize the ductility of the samples. PEDOT-g-PAU has shown high stretchability of up to 500% and, therefore, could potentially be used in skin-worn flexible electronics, while additional subsequent doping is required to improve the deterioration of electrical properties after the addition of the insulating urethane layer.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • thermogravimetry
  • differential scanning calorimetry
  • ductility
  • infrared spectroscopy