People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cosnita, Mihaela
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Mechanical and Acoustic Properties of Alloys Used for Musical Instruments
- 2022The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Compositescitations
- 2021Characterization of Aluminum Alloy–Silicon Carbide Functionally Graded Materials Developed by Centrifugal Casting Processcitations
- 2019All-Waste Hybrid Composites with Waste Silicon Photovoltaic Modulecitations
- 2019Metastable Al–Si–Ni Alloys for Additive Manufacturing: Structural Stability and Energy Release during Heatingcitations
- 2018The Influence of Powder Particle and Grain Size on Parts Manufacturing by Powder Bed Fusioncitations
- 2017Effect of waste polyethylene terephthalate content on the durability and mechanical properties of composites with tire rubber matrixcitations
- 2014Interfaces and mechanical properties of recycled rubber–polyethylene terephthalate–wood compositescitations
Places of action
Organizations | Location | People |
---|
article
The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Composites
Abstract
<jats:p>The paper presents new value-added composite materials prepared by recycling tire rubber, polyethene terephthalate (PET), high-density polyethene (HDPE), wood sawdust, and fly ash. The composites were manufactured through the compression molding technique for three temperatures (150 °C, 160 °C, and 190 °C) previously optimized. The addition of fly ash as reinforcement in polymer blends is a viable route to improve the composite” properties. The paper aims to assess the effect of fly ash on the mechanical properties and water stability of the new all waste composites considering their applications as outdoor products. The static tensile (stress-strain behavior) and compression properties of the composites were tested. The fly ash composites were characterized in terms of wetting behavior and surface energies (contact angle measurements); chemical structure of the new interface developed between composite” components (FTIR analysis), crystalline structure (XRD analysis), surface morphology and topography (SEM, AFM). The addition of fly ash promoted the development of the hybrid interfaces in the new composites, as FTIR analysis has shown, which, in turn, greatly improved the mechanical and water resistance. The novel all waste composites exhibited lower surface energies, larger contact angles, and smoother morphologies when compared to those with no fly ash. Overall, the study results have revealed that fly ash has improved the mechanical strength and water stability of the composites through the formation of strong hybrid interfaces. The study results show optimal water stability and tensile strength for 0.5% fly ash composites cured at 190 °C and optimal compressive strength with good water stability for 1% fly ash composite cured at 150 °C.</jats:p>